1. 超音速客機的各國研究機構
1970年代中後期,當航空技術日益進步,超音速飛行對環境影響的指控被證明是誇大其詞,第二代超音速客機的研發開始浮出水面。雖然1970年代初的環境並不利於超音速客機,但美國的研究實際上仍然一直進行。三家主要的飛機製造商,包括波音、道格拉斯、洛歇,均一直接受政府的資助。據統計,在1970年代美國國家航空航天局已經花費了超過900萬美元投入研究,其中過半用於資助上述三家公司。美國的第二代超音速客機以「先進超音速客機」(Advanced Supersonic Transport,AST)為名,三家公司都提出了自己的方案。波音、洛歇分別以波音2707、洛歇L-2000為基礎進行改進,道格拉斯則推出DC-AST方案,而三個方案均大同小異,但尺寸比第一代要大得多,目標載客300人以上,而且速度更高,DC-AST設計速度為2.2馬赫,而洛歇、波音的設計更分別追求2.55馬赫和2.7馬赫,更大范圍的使用鈦合金。第二代超音速客機並以減輕噪音、提高燃油效率為目標,設想使用通用電氣的變循環發動機(Variable-cycle engine,VCE)。與此同時,蘇聯的圖波列夫設計局也推出圖-244的構想,目標載客250至320人,巡航速度2.2馬赫,最大航程達9200公里,但沒有太多實際進展。
然而時移世易,此時超音速客機在經濟性方面已經難以和普通高亞音速客機競爭。當超音速客機在1960年代出現的時候,主要的競爭對手是以波音707為代表、載客100至200人的遠程亞音速客機,以速度和載客量來衡量,超音速客機仍然有一定優勢。但隨著以波音747為代表、載客300至400人的新一代亞音速寬體客機在1970年代起迅速普及,若從人均飛行成本的角度超音速客機已經完全不具備優勢。另一方面,在現有的技術上超音速客機在航程仍然難以和亞音速客機匹敵,隨著渦輪風扇發動機自1960年代以來的廣泛運用和日益提升的涵道比,其燃油效益已非此前的渦輪噴氣發動機所相比。因此,要實現超音速飛行無可避免要在經濟性上打折扣,成本效益更好的寬體亞音速客機更能獲得航空公司的青睞,最終「先進超音速客機」的計劃也在1980年代中取消。 美國國家航空航天局於1990年啟動了「高速民用運輸機」計劃(High Speed Civil Transport,HSCT),以改進超音速客機設計為目標。美國國家航空航天局]聯合了波音和麥道,花費了超過九年時間,投放了過10億美元。設計指標為載客250至300人、2倍音速,務求令超音速客機的機票價格不會高於普通航班超過20%。俄羅斯在1990年代中期為一架圖-144重新裝上新發動機,為HSCT計劃進行實驗以收集數據。
但經濟性仍然是航空公司最大的考慮因素,HSCT的推廣欠缺市場反應。1990年代末,已經收購了麥道的波音公司開始考慮是否繼續投資在這項計劃,後來表示將暫緩這個計劃,或許會到適當時候,或2020年再啟動。隨著波音的退出,美國國家航空航天局在1999年2月取消了HSCT,轉而為國際空間站增加6億美元資金。 在1990年代初,日本政府就把開發第二代超音速客機設定為重要的技術戰略之一。日本宇宙航空研究開發機構(JAXA)發起的「次世代超音速客機」(National Experimental Airplane for Next Generation Supersonic Transport,NEXST)開發計劃於2002年正式啟動,致力於研製新一代的超音速客機,設計指標為載客300人、速度2馬赫、比協和飛機節約75%燃料並多兩倍的航程,期望能於2015年進行首飛。該計劃曾在2002年時發生過測試意外——2002年7月14日,日本團隊在澳大利亞南部的武麥拉測試場(Woomera Test Range)以一具1/10(約11.5米長)的縮比模型進行首次的試射,但以火箭籌載的測試模型在發射升空後不久就失控墜毀。事後日本團隊不願針對失敗原因發表評論,但長達半年的准備工作卻付之一炬。
2005年6月,法國和日本在巴黎航空博覽會上正式簽署合作協議,將NEXST項目擴展至兩國合作,由兩國的合資公司共同研製。2005年10月10日,JAXA在澳大利亞西部荒漠伍默拉試驗場再次試飛超音速客機的1:10模型,並取得成功。原型機由日本三菱重工業公司研製,全長11.5米,僅重2噸。
經過5年聯合研製,代表法國參與研製項目的歐洲宇航防務集團(EADS)於2011年的巴黎航空展中,宣布推出「零排放超高音速客機」(Zero Emission Hypersonic Transportation,ZEHST)的概念機,這種新型客機長約80米,翼展在35米至40米之間,最高巡航速度達4馬赫(約5000公里/小時)。飛機採用四種發動機,分別為兩台使用生物燃料的渦輪噴氣發動機、兩台使用液態氫氧燃料的助推火箭發動機、一台低溫火箭發動機和兩台使用液態氫的沖壓發動機。在不同飛行階段,ZHEST使用不同類型發動機。起飛階段由渦輪噴氣發動機將飛機推升到距地面5公里的空中,飛行速度達到0.8馬赫;然後切換至火箭發動機,將飛機推送到距地面20公里的高空,飛行速度達到2.5馬赫;最後切換成沖壓發動機,加速至4馬赫,飛機升至距地面32公里的高空進行超高音速巡航。這種飛機可以搭乘50至100名旅客,從巴黎飛東京只需2.5小時。ZHEST預計在2020年開始進行測試飛行,並期望能在2050年投入使用。 蘇霍伊和灣流合作的S-21公務噴氣機
另一個備受關注的研究領域是超音速公務噴氣機(Supersonic business jet,SSBJ)。音爆的強度除了和飛機的速度有關,也和飛機的大小成正比,所以小型噴氣機的噪音問題相對大型民航機輕微得多。另一方面,能擁有公務噴氣機不外乎是企業高管和政府機構,正如協和飛機的座上客,這些乘客通常十分願意付出更多金錢來換取減少飛行時間。
俄羅斯著名戰斗機製造商蘇霍伊與美國公務噴氣機製造商灣流宇航在1990年代中期曾共同研究,達梭宇航於2000年代初進入這個領域,但至今仍然未有機型投產。目前最新的SSBJ計劃包括美國Aerion公司的Aerion SBJ、超音速宇航國際和洛歇馬丁合作的靜音超音速運輸機(SAI Quiet Supersonic Transport),及圖波列夫設計局的圖-444。 參見:太空飛機
英國Reaction Engines公司在在英國航天局的協助下,正在研發一種名為「雲霄塔」(Skylon)的太空飛機,最高5倍音速、可容納40 名乘客、使用無碳燃料,發動機從大氣中吸收氧氣和氫氣作燃料,並以單級入軌方式進入近地軌道。如果這種飛機研製成功,將大大縮短長途航空的旅行時間,從歐洲布魯塞爾前住悉尼只需4.6小時。