⑴ (1) Black-Scholes定價模型
這個定價模型啊,是國外的統一定價模型還是不錯的。
⑵ 關於Black-Scholes模型
我建議你看看公司價值定價方法,裡面有一個實物期權定價法,你看看。
我在這里也就不給你貼了,沒意思
⑶ Black-Scholes期權定價模型的分紅方法
B-S-M模型只解決了不分紅股票的期權定價問題,默頓發展了B-S模型,使其亦運用於支付紅利的股票期權。
(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整後的股票價值S′代入B-S模型中即可:S′=S-DT·E-rT。如果在有效期內存在其它所得,依該法一一減去。從而將B-S模型變型得新公式:
C=(S-·E-γT·N(D1)-L·E-γT·N(D2)
(二)存在連續紅利支付是指某股票以一已知分紅率(設為δ)支付不間斷連續紅利,假如某公司股票年分紅率δ為0.04,該股票現值為164,從而該年可望得紅利164×004=6.56。值得注意的是,該紅利並非分4季支付每季164;事實上,它是隨美元的極小單位連續不斷的再投資而自然增長的,一年累積成為6.56。因為股價在全年是不斷波動的,實際紅利也是變化的,但分紅率是固定的。因此,該模型並不要求紅利已知或固定,它只要求紅利按股票價格的支付比例固定。
在此紅利現值為:S(1-E-δT),所以S′=S·E-δT,以S′代S,得存在連續紅利支付的期權定價公式:C=S·E-δT·N(D1)-L·E-γT·N(D2)
⑷ 已知股票價格變動如下,rf=5%,100:120/90 ,以此股票為標的資產一年期的歐式期權的執行價格為X=110元,
(1)用單步二叉樹模型
對沖Δ=10/(120-90)=1/3
組合價值=1/3×120-10=30
組合價值折現值=30×e^(-5%×1)=28.54
看漲期權價格=1/3×100-28.54=4.79
(2)用買賣權平價公式:
如果一個投資組合由一隻股票和一個看跌期權組成 (S+Vp),另一個投資組合由一個零息債券/純貼現債券(或者存入銀行存款)和一個看漲期權組成 (K+Vc),那麼這兩個投資組合的收益是一樣的。
110×e^(-5%×1)+4.79=看跌期權價格+100
看跌期權價格=9.43
⑸ 估值模型對實值期權的定價效果好為什麼
網上內容,自己讀下理解下你說的好壞
期權定價模型基於對沖證券組合的思想。投資者可建立期權與其標的股票的組合來保證確定報酬。在均衡時,此確定報酬必須得到無風險利率。期權的這一定價思想與無套利定價的思想是一致的。所謂無套利定價就是說任何零投入的投資只能得到零回報,任何非零投入的投資,只能得到與該項投資的風險所對應的平均回報,而不能獲得超額回報(超過與風險相當的報酬的利潤)。從Black-Scholes期權定價模型的推導中,不難看出期權定價本質上就是無套利定價。
B-S期權定價模型[3] (以下簡稱B-S模型)及其假設條件
5個假設
1、金融資產收益率服從對數正態分布;
2、在期權有效期內,無風險利率和金融資產收益變數是恆定的;
3、市場無摩擦,即不存在稅收和交易成本;
4、金融資產在期權有效期內無紅利及其它所得(該假設後被放棄);
5、該期權是歐式期權,即在期權到期前不可實施。
定價公式
C=S·N(D1)-L·E-γT·N(D2)
其中:
D1=1NSL+(γ+σ22)Tσ·T
D2=D1-σ·T
C—期權初始合理價格
L—期權交割價格
S—所交易金融資產現價
T—期權有效期
r—連續復利計無風險利率H
σ2—年度化方差
N()—正態分布變數的累積概率分布函數,在此應當說明兩點:
第一,該模型中無風險利率必須是連續復利形式。一個簡單的或不連續的無風險利率(設為r0)一般是一年復利一次,而r要求利率連續復利。r0必須轉化為r方能代入上式計算。兩者換算關系為:r=LN(1+r0)或r0=Er-1。例如r0=0.06,則r=LN(1+0.06)=0583,即100以583%的連續復利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。
第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則T=100/365=0.274。
推導運用
(一)B-S模型的推導B-S模型的推導是由看漲期權入手的,對於一項看漲期權,其到期的期值是:E[G]=E[max(ST-L,O)]
其中,E[G]—看漲期權到期期望值ST—到期所交易金融資產的市場價值
L—期權交割(實施)價
到期有兩種可能情況:1、如果STL,則期權實施以進帳(In-the-money)生效,且mAx(ST-L,O)=ST-L
2、如果ST<>
max(ST-L,O)=0
從而:E[CT]=P×(E[ST|STL)+(1-P)×O=P×(E[ST|STL]-L)
其中:P—(STL)的概率E[ST|STL]—既定(STL)下ST的期望值將E[G]按有效期無風險連續復利rT貼現,得期權初始合理價格:C=P×E-rT×(E[ST|STL]-L)(*)這樣期權定價轉化為確定P和E[ST|STL]。
首先,
對收益進行定義。與利率一致,收益為金融資產期權交割日市場價格(ST)與現價(S)比值的對數值,即收益=1NSTS。由假設1收益服從對數正態分布,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以證明,相對價格期望值大於EμT,為:E[STS]=EμT+σT22=EμT+σ2T2=EγT從而,μT=T(γ-σ22),且有σT=σT其次,求(STL)的概率P,也即求收益大於(LS)的概率。已知正態分布有性質:Pr06[ζχ]=1-N(χ-μσ)其中:ζ—正態分布隨機變數χ—關鍵值μ—ζ的期望值σ—ζ的標准差所以:P=Pr06[ST1]=Pr06[1NSTS]1NLS]=1N-1NLS2)TTNC4由對稱性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定STL下ST的期望值。因為E[ST|ST]L]處於正態分布的L到∞范圍,所以,E[ST|ST]=S EγT N(D1)N(D2)
其中:
D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最後,
將P、E[ST|ST]L]代入(*)式整理得B-S定價模型:C=S N(D1)-L E-γT N(D2)(二)B-S模型應用實例假設市場上某股票現價S為164,無風險連續復利利率γ是0.0521,市場方差σ2為0.0841,那麼實施價格L是165,有效期T為0.0959的期權初始合理價格計算步驟如下:
①求D1:D1=(1N164165+(0.052)+0.08412)×0.09590.29×0.0959=0.0328
②求D2:D2=0.0328-0.29×0.0959=-0.570
③查標准正態分布函數表,得:N(0.03)=0.5120N(-0.06)=0.4761
④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803
因此理論上該期權的合理價格是5.803。如果該期權市場實際價格是5.75,那麼這意味著該期權有所低估。在沒有交易成本的條件下,購買該看漲期權有利可圖。
(三)看跌期權定價公式的推導B-S模型是看漲期權的定價公式。
根據售出—購進平價理論(Put-callparity)可以推導出有效期權的定價模型,由售出—購進平價理論,購買某股票和該股票看跌期權的組合與購買該股票同等條件下的看漲期權和以期權交割價為面值的無風險折扣發行債券具有同等價值,以公式表示為:
S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T
移項得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,將B-S模型代入整理得:P=L E-γT [1-N(D2)]-S[1-N(D1)]此即為看跌期權初始價格定價模型。
發展
B-S模型只解決了不分紅股票的期權定價問題,默頓發展了B-S模型,使其亦運用於支付紅利的股票期權。(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整後的股票價值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期內存在其它所得,依該法一一減去。從而將B-S模型變型得新公式:
C=(S- E-γT N(D1)-L E-γT N(D2)
(二)存在連續紅利支付是指某股票以一已知分紅率(設為δ)支付不間斷連續紅利,假如某公司股票年分紅率δ為0.04,該股票現值為164,從而該年可望得紅利164×004=6.56。值得注意的是,該紅利並非分4季支付每季164;事實上,它是隨美元的極小單位連續不斷的再投資而自然增長的,一年累積成為6.56。因為股價在全年是不斷波動的,實際紅利也是變化的,但分紅率是固定的。因此,該模型並不要求紅利已知或固定,它只要求紅利按股票價格的支付比例固定。
在此紅利現值為:S(1-E-δT),所以S′=S E-δT,以S′代S,得存在連續紅利支付的期權定價公式:C=S E-δT N(D1)-L E-γT N(D2)
影響
自B-S模型1973年首次在政治經濟雜志(Journalofpo Litical Economy)發表之後,芝加哥期權交易所的交易商們馬上意識到它的重要性,很快將B-S模型程序化輸入計算機應用於剛剛營業的芝加哥期權交易所。該公式的應用隨著計算機、通訊技術的進步而擴展。到今天,該模型以及它的一些變形已被期權交易商、投資銀行、金融管理者、保險人等廣泛使用。衍生工具的擴展使國際金融市場更富有效率,但也促使全球市場更加易變。新的技術和新的金融工具的創造加強了市場與市場參與者的相互依賴,不僅限於一國之內還涉及他國甚至多國。結果是一個市場或一個國家的波動或金融危機極有可能迅速的傳導到其它國家乃至整個世界經濟之中。中國金融體制不健全、資本市場不完善,但是隨著改革的深入和向國際化靠攏,資本市場將不斷發展,匯兌制度日漸完善,企業也將擁有更多的自主權從而面臨更大的風險。因此,對規避風險的金融衍生市場的培育是必需的,對衍生市場進行探索也是必要的,人們才剛剛起步。
6二項式模型編輯
二項式模型的假設主要有:
1、不支付股票紅利。
2、交易成本與稅收為零。
3、投資者可以以無風險利率拆入或拆出資金。
4、市場無風險利率為常數。
5、股票的波動率為常數。
假設在任何一個給定時間,金融資產的價格以事先規定的比例上升或下降。如果資產價格在時間t的價格為S,它可能在時間t+△t上升至uS或下降至dS。假定對應資產價格上升至uS,期權價格也上升至Cu,如果對應資產價格下降至dS,期權價格也降至Cd。當金融資產只可能達到這兩種價格時,這一順序稱為二項程序。
⑹ 對一個歐式看跌期權,已知股票的現價為19元,其連續分紅比率2%,波動率50%,期限為6個月,執行價為17元
連續分紅直接用r-d 替代r 就完了 把r=3.5 帶回BS-put就行
⑺ 已知期權價值 怎麼計算stock price
布萊克-斯科爾斯期權定價模型的七個假設:1.在期權壽命期內,買方期權標的股票不發放股利,也不做其他分配;2.股票或期權的買賣沒有交易成本;3.短期的無風險利率是已知的,並且在期權壽命期內保持不變;4.任何證券購買者能以短期的無風險利率借得任何數量的資金;5.允許賣空,賣空者將立即得到所賣空股票當天價格的資金;6.看漲期權只能在到期日執行; 7.所有證券交易都是連續發生的,股票價格隨機遊走。
⑻ 期權價值評估方法中的布萊克-斯科爾斯期權定價模型的七個假設是什麼
布萊克-斯科爾斯期權定價模型的七個假設:
1.在期權壽命期內,買方期權標的股票不發放股利,也不做其他分配;
2.股票或期權的買賣沒有交易成本;
3.短期的無風險利率是已知的,並且在期權壽命期內保持不變;
4.任何證券購買者能以短期的無風險利率借得任何數量的資金;
5.允許賣空,賣空者將立即得到所賣空股票當天價格的資金;
6.看漲期權只能在到期日執行;
7.所有證券交易都是連續發生的,股票價格隨機遊走。