當前位置:首頁 » 股票技巧 » 公司股票風險利率咋算
擴展閱讀
富迪科技股票查詢 2025-07-05 13:12:27
大智慧如何搜股票代碼 2025-07-05 12:47:30
哪些屬於科技類股票 2025-07-05 12:08:17

公司股票風險利率咋算

發布時間: 2021-07-17 05:17:42

❶ a公司股票的貝塔系數為2.5 無風險利率為6% 市場上所有股票的平均報酬率為10%.根

(1) 該公司股票的 預期收益率:6%+(10%-6%)*2.5=16%
(2) 若該股票為固定成長股票,成長率為6%,預計一年後的股利為1,5元,則 該股票的價值:1.5/(16%-6%)=15元
(3)若未來三年股利按20%增長,而後每年增長6%,則該股票價值:
2*1.2/1.16+2*1.2*1.2/(1.16*1.16)+2*1.2*1.2*1.2/(1.16*1.16*1.16)+2*1.2*1.2*1.2*1.06/(16%-6%)=43.06元

❷ 什麼是股票利率風險

這是指利率變動,出現貨幣供給量變化,從而導致證券需求變化而導致證券價格變動的一種風險。利率下調,人們覺得存銀行不合算,就會把錢拿出來買證券,從而造成買證券者增多、證券價格便會隨之上升;相反,利率上調,人們覺得存銀行合算,買證券的人隨之減少,價格也隨之下跌。在西方發達國家,利率變動頻繁,因利率下降引起股價上升或因利率上調引起股價下跌的利率風險也就較大;而在以下不發達國家,利率較少變動,因利率變化所引起的風險也相應較低,人們承擔這種風險的意識和能力也較差。例如1988年8、9月間,我國銀行利率上調,對一些原來買債券的人來說,當初購買時就是因為看中債券比銀行利率高,有的好不容易才通過各種關系購得,這時,債券利率反比銀行利率下降了,而且還不能保值,故有不少債券投資者向銀行、發行債券的企業以及新聞媒介呼籲,要求調高債券利率。實際上,這正是他們缺乏投資常識,不知道買證券還會遇上利率風險得一種反映。

❸ A公司股票的貝塔系數為2,無風險利率為5%,市場上所有股票的平均報酬率為10%。要求計算該公司股票的預期...

(1)該公司股票的預期收益率:6%+(10%-6%)*2.5=16%(2)若該股票為固定成長股票,成長率為6%,預計一年後的股利為151735元,則該股票的價值:1.5/(16%-6%)=15元(3)若未來三年股利按20%增長5而後每年增長6%,則該股票價值:2*1.2/1.16+2*1.2*1.2/(1.16*1.16)+2*1.2*1.2*1.2/(1.16*1.16*1.16)+2*1.2*1.2*1.2*1.06/(16%-6%)=43.06元

❹ 股票市場系統性風險比例如何計算

  • 系統性風險可以用貝塔系數來衡量。

  • 系統性風險即市場風險,即指由整體政治、經濟、社會等環境因素對證券價格所造成的影響。系統性風險包括政策風險、經濟周期性波動風險、利率風險、購買力風險、匯率風險等。這種風險不能通過分散投資加以消除,因此又被稱為不可分散風險。 系統性風險可以用貝塔系數來衡量。

  • β系數也稱為貝塔系數(Beta coefficient),是一種風險指數,用來衡量個別股票或股票基金相對於整個股市的價格波動情況。β系數是一種評估證券系統性風險的工具,用以度量一種證券或一個投資證券組合相對總體市場的波動性,在股票、基金等投資術語中常見。

  • 貝塔的計算公式為:

其中ρam為證券a與市場的相關系數;σa為證券a的標准差;σm為市場的標准差。

❺ A公司股票的貝塔系數為2.5,無風險利率為6%,市場上所有股票的平均報酬率為10%。根據資料要求計算:

(1)預期收益率:6%+(10%-6%)*2.5=16%
(2)該股票的價值:1.5/(16%-6%)=15元
(3)若未來三年股利按20%增長,而後每年增長6%,則該股票價值:
2*1.2/1.16+2*1.2*1.2/(1.16*1.16)+2*1.2*1.2*1.2/(1.16*1.16*1.16)+2*1.2*1.2*1.2*1.06/(16%-6%)=43.06元

❻ 如何計算一支股票的風險系數並給其定價

股票市場投機的多,真正價值投資的人很少。

計算價格只是理論,總與市場有偏差。

我這里給你看看吧:

1.短期持有,未來准備出售的股票估價

P0—股票價格;Pn—預計股票n年末的售價,

Dt—第t期股利;r—股東要求的報酬率。

❼ 股票中的無風險利率如何確定

無風險利率:利率是對機會成本及風險的補償,其中對機會成本的補償部分稱為無風險利率。專業點說是對無信用風險和市場風險的資產的投資,指到期日期等於投資期的國債的利率。
無風險利率是指將資金投資於某一項沒有任何風險的投資對象而能得到的利息率。這是一種理想的投資收益。一般受基準利率影響。
無風險利率是期權價格的影響因素之一,無風險利率(Risk-free Interest Rate)水平也會影響期權的時間價值和內在價值。當利率提高,期權的時間價值曲線右移;反之,當利率下降時,期權的時間價值曲線左移。不過,利率水平對期權時間價值的整體影響還是十分有限的。關鍵是對期權內在價值的影響,對看漲期權是正向影響,對看跌期權是反向影響。
當其他因素不發生變化時,如果無風險利率上升,標的資產價格的預期增長率可能上升,而期權買方未來可能收到的現金流的現值將下降,這兩個因素都使看跌期權的價值下降。因此,無風險利率越高,看跌期權的價值越低。而對於看漲期權而言,標的資產價格的增長率上升會導致看漲期權的價值上升,而未來可能收到的現金流的現值下降會導致看漲期權的價值下降,理論證明,前一個因素對看漲期權的價值的影響大於後一個因素。因此,無風險利率越高,看漲期權的價值越高。
無風險利率對期權價格的影響用希臘字母RHO來體現。對看漲期權來說,利率上升,期權價格上漲;反之,利率下降,期權價格下降,這點從看漲期權的RHO值為正可以看出。反之,對看跌期權來說,利率上升,期權價格下降;利率下降,期權價格上升,因為看跌期權的RHO值為負。

❽ 請在這里概述您的問題 公司股票的貝他系數為1.5,無風險利率為7%,市場上所有股票的平均報酬率為13%。

第一問,預期收益率=7%+1.5*(13%-7%)=16%

第二問,第四年起股利上漲6%,則從第四年開始的股利折現,在第三年年末,價值=1.5*(1+6%)/(10%-6%)=39.75元。
再倒推到第二年年末,價值=(39.75+1.5)/(1+10%)=37.5元
再倒推到第一年年末,價值=(37.5+1.5)/(1+10%)=35.45元
再倒推到現在,價值=(35.45+1.5)/(1+10%)=33.60元
所以該股票現在的價值是33.60元。

❾ A公司股票的貝塔系數為2.5,無風險利率為6%,市場上所有股票的平均報酬率為10%,

(1)根據資本資產定價模式公式:該公司股票的預期收益率=6%+2.5×(10%-6%)=16%
(2)根據固定成長股票的估價模型計算公式:該股票價值=1.5/(16%-6%)=15元

❿ 該公司股票的風險收益率為

該公司股票的風險收益率=無風險利率+β(股票的平均收益率—無風險利率)
即10%+0.5(14%-10%)=12%