㈠ Bigdata、Hadoop,百度、騰訊等目前大型互聯網公司所應用的價格技術和解決方案
網路有自己的分布式存儲系統,但是一些離線分析也會用hadoop。騰訊的存儲基本上採用關系型,但也在利用hadoop進行分布式架構。bigdata就是個概念,指大數據。
㈡ 金融需要 hadoop,spark 等這些大數據分析工具嗎
未至科技魔方是一款大數據模型平台,是一款基於服務匯流排與分布式雲計算兩大技術架構的一款數據分析、挖掘的工具平台,其採用分布式文件系統對數據進行存儲,支持海量數據的處理。採用多種的數據採集技術,支持結構化數據及非結構化數據的採集。通過圖形化的模型搭建工具,支持流程化的模型配置。通過第三方插件技術,很容易將其他工具及服務集成到平台中去。數據分析研判平台就是海量信息的採集,數據模型的搭建,數據的挖掘、分析最後形成知識服務於實戰、服務於決策的過程,平台主要包括數據採集部分,模型配置部分,模型執行部分及成果展示部分等。
㈢ 什麼是大數據分析Hadoop
要了解什麼是Hadoop,我們必須首先了解與大數據和傳統處理系統有關的問題。前進,我們將討論什麼是Hadoop,以及Hadoop如何解決與大數據相關的問題。我們還將研究CERN案例研究,以突出使用Hadoop的好處。
在之前的博客「 大數據教程」中,我們已經詳細討論了大數據以及大數據的挑戰。在此博客中,我們將討論:
1、傳統方法的問題
2、Hadoop的演變
3、Hadoop的
4、Hadoop即用解決方案
5、何時使用Hadoop?
6、什麼時候不使用Hadoop?
一、CERN案例研究
大數據正在成為組織的機會。現在,組織已經意識到他們可以通過大數據分析獲得很多好處,如下圖所示。他們正在檢查大型數據集,以發現所有隱藏的模式,未知的相關性,市場趨勢,客戶偏好和其他有用的業務信息。
這些分析結果正在幫助組織進行更有效的營銷,新的收入機會,更好的客戶服務。他們正在提高運營效率,與競爭對手組織相比的競爭優勢以及其他業務利益。
什麼是Hadoop –大數據分析的好處
因此,讓我們繼續前進,了解在兌現大數據機會方面與傳統方法相關的問題。
二、傳統方法的問題
在傳統方法中,主要問題是處理數據的異構性,即結構化,半結構化和非結構化。RDBMS主要關注於銀行交易,運營數據等結構化數據,而Hadoop則專注於文本,視頻,音頻,Facebook帖子,日誌等半結構化,非結構化數據。RDBMS技術是一種經過驗證的,高度一致,成熟的系統許多公司的支持。另一方面,由於大數據(主要由不同格式的非結構化數據組成)對Hadoop提出了需求。
現在讓我們了解與大數據相關的主要問題是什麼。因此,繼續前進,我們可以了解Hadoop是如何成為解決方案的。
什麼是Hadoop –大數據問題
第一個問題是存儲大量數據。
無法在傳統系統中存儲大量數據。原因很明顯,存儲將僅限於一個系統,並且數據正在以驚人的速度增長。
第二個問題是存儲異構數據。
現在,我們知道存儲是一個問題,但是讓我告訴您,這只是問題的一部分。由於我們討論了數據不僅龐大,而且還以各種格式存在,例如:非結構化,半結構化和結構化。因此,您需要確保您擁有一個系統來存儲從各種來源生成的所有這些種類的數據。
第三個問題是訪問和處理速度。
硬碟容量正在增加,但磁碟傳輸速度或訪問速度並未以相似的速度增加。讓我以一個示例為您進行解釋:如果您只有一個100 Mbps I / O通道,並且正在處理1TB數據,則大約需要2.91個小時。現在,如果您有四台具有一個I / O通道的計算機,則對於相同數量的數據,大約需要43分鍾。因此,與存儲大數據相比,訪問和處理速度是更大的問題。
在了解什麼是Hadoop之前,讓我們首先了解一下Hadoop在一段時間內的發展。
Hadoop的演變
2003年,道格·切特(Doug Cutting)啟動了Nutch項目,以處理數十億次搜索並為數百萬個網頁建立索引。2003年10月下旬– Google發布帶有GFS(Google文件系統)的論文。2004年12月,Google發布了MapRece論文。在2005年,Nutch使用GFS和MapRece進行操作。2006年,雅虎與Doug Cutting及其團隊合作,基於GFS和MapRece創建了Hadoop。如果我告訴您,您會感到驚訝,雅虎於2007年開始在1000個節點的群集上使用Hadoop。
2008年1月下旬,雅虎向Apache Software Foundation發布了Hadoop作為一個開源項目。2008年7月,Apache通過Hadoop成功測試了4000個節點的集群。2009年,Hadoop在不到17小時的時間內成功整理了PB級數據,以處理數十億次搜索並為數百萬個網頁建立索引。在2011年12月,Apache Hadoop發布了1.0版。2013年8月下旬,發布了2.0.6版。
當我們討論這些問題時,我們發現分布式系統可以作為解決方案,而Hadoop提供了相同的解決方案。現在,讓我們了解什麼是Hadoop。
三、什麼是Hadoop?
Hadoop是一個框架,它允許您首先在分布式環境中存儲大數據,以便可以並行處理它。 Hadoop中基本上有兩個組件:
1、大數據Hadoop認證培訓
2、講師指導的課程現實生活中的案例研究評估終身訪問探索課程
什麼是Hadoop – Hadoop即解決方案
第一個問題是存儲大數據。
HDFS提供了一種分布式大數據存儲方式。您的數據存儲在整個DataNode的塊中,您可以指定塊的大小。基本上,如果您擁有512MB的數據,並且已經配置了HDFS,那麼它將創建128MB的數據塊。 因此,HDFS將數據分為512/128 = 4的4個塊,並將其存儲在不同的DataNode上,還將在不同的DataNode上復制數據塊。現在,由於我們正在使用商品硬體,因此存儲已不是難題。
它還解決了縮放問題。它著重於水平縮放而不是垂直縮放。您始終可以根據需要隨時在HDFS群集中添加一些額外的數據節點,而不是擴展DataNodes的資源。讓我為您總結一下,基本上是用於存儲1 TB的數據,您不需要1 TB的系統。您可以在多個128GB或更少的系統上執行此操作。
下一個問題是存儲各種數據。
藉助HDFS,您可以存儲各種數據,無論是結構化,半結構化還是非結構化。由於在HDFS中,沒有預轉儲模式驗證。並且它也遵循一次寫入和多次讀取模型。因此,您只需寫入一次數據,就可以多次讀取數據以尋找見解。
Hird的挑戰是訪問和處理數據更快。
是的,這是大數據的主要挑戰之一。為了解決該問題,我們將處理移至數據,而不是將數據移至處理。這是什麼意思?而不是將數據移動到主節點然後進行處理。在MapRece中,處理邏輯被發送到各個從屬節點,然後在不同的從屬節點之間並行處理數據。然後,將處理後的結果發送到主節點,在該主節點上合並結果,並將響應發送回客戶端。
在YARN架構中,我們有ResourceManager和NodeManager。ResourceManager可能會或可能不會與NameNode配置在同一台機器上。 但是,應該將NodeManager配置在存在DataNode的同一台計算機上。
YARN通過分配資源和安排任務來執行您的所有處理活動。
什麼是Hadoop – YARN
它具有兩個主要組件,即ResourceManager和NodeManager。
ResourceManager再次是主節點。它接收處理請求,然後將請求的各個部分相應地傳遞到相應的NodeManager,什麼是大數據分析Hadoop在此進行實際處理。NodeManager安裝在每個DataNode上。它負責在每個單個DataNode上執行任務。
我希望現在您對什麼是Hadoop及其主要組件有所了解。讓我們繼續前進,了解何時使用和何時不使用Hadoop。
何時使用Hadoop?
Hadoop用於:
1、搜索 – Yahoo,亞馬遜,Zvents
2、日誌處理 – Facebook,雅虎
3、數據倉庫 – Facebook,AOL
4、視頻和圖像分析 –紐約時報,Eyealike
到目前為止,我們已經看到了Hadoop如何使大數據處理成為可能。但是在某些情況下,不建議使用Hadoop。
㈣ 百億級實時大數據分析項目,為什麼不用Hadoop
誰說百億級大數據分析不用Hadoop了,是你不用的吧,Hadoop是最普遍的大數據分析工具了,大部分人都在用這個的。也是被認為學習大數據必須要學習的課程的,Hadoop是很流行的一個大數據分析工具。檸檬學院大數據。
㈤ 擁有java基礎,怎樣編寫一個股票分析軟體
像這些軟體都有自己的語法,你先學下裡面每個平台的語法,你想寫的是個選股策略,就要有自己的思路,你這套選股方法成熟,給你帶來過收益,或者你只當它是個參考作用,而且你在編程的時候一定不要邏輯出問題,盜用價格
㈥ 金融需要 hadoop,spark 等這些大數據分析工具嗎使用場景是怎樣的
看看用億信ABI做的相關案例
銀行大數據應用
國內不少銀行已經開始嘗試通過大數據來驅動業務運營,如中信銀行信用卡中心使用大數據技術實現了實時營銷,光大銀行建立了社交網路信息資料庫,招商銀行則利用大數據發展小微貸款。總的來看銀行大數據應用可以分為四大方面:
1、客戶畫像
客戶畫像應用主要分為個人客戶畫像和企業客戶畫像。個人客戶畫像包括人口統計學特徵、消費能力數據、興趣數據、風險偏好等;企業客戶畫像包括企業的生產、流通、運營、財務、銷售和客戶數據、相關產業鏈上下游等數據。值得注意的是,銀行擁有的客戶信息並不全面,基於銀行自身擁有的數據有時候難以得出理想的結果甚至可能得出錯誤的結論。比如,如果某位信用卡客戶月均刷卡8次,平均每次刷卡金額800元,平均每年打4次客服電話,從未有過投訴,按照傳統的數據分析,該客戶是一位滿意度較高流失風險較低的客戶。但如果看到該客戶的微博,得到的真實情況是:工資卡和信用卡不在同一家銀行,還款不方便,好幾次打客服電話沒接通,客戶多次在微博上抱怨,該客戶流失風險較高。所以銀行不僅僅要考慮銀行自身業務所採集到的數據,更應考慮整合外部更多的數據,以擴展對客戶的了解。包括:
(1)客戶在社交媒體上的行為數據(如光大銀行建立了社交網路信息資料庫)。通過打通銀行內部數據和外部社會化的數據可以獲得更為完整的客戶拼圖,從而進行更為精準的營銷和管理;
(2)客戶在電商網站的交易數據,如建設銀行則將自己的電子商務平台和信貸業務結合起來,阿里金融為阿里巴巴用戶提供無抵押貸款,用戶只需要憑借過去的信用即可;
(3)企業客戶的產業鏈上下游數據。如果銀行掌握了企業所在的產業鏈上下游的數據,可以更好掌握企業的外部環境發展情況,從而可以預測企業未來的狀況;
(4)其他有利於擴展銀行對客戶興趣愛好的數據,如網路廣告界目前正在興起的DMP數據平台的互聯網用戶行為數據。
2、精準營銷
在客戶畫像的基礎上銀行可以有效的開展精準營銷,包括:
(1)實時營銷。實時營銷是根據客戶的實時狀態來進行營銷,比如客戶當時的所在地、客戶最近一次消費等信息來有針對地進行營銷(某客戶採用信用卡采購孕婦用品,可以通過建模推測懷孕的概率並推薦孕婦類喜歡的業務);或者將改變生活狀態的事件(換工作、改變婚姻狀況、置居等)視為營銷機會;
(2)交叉營銷。即不同業務或產品的交叉推薦,如招商銀行可以根據客戶交易記錄分析,有效地識別小微企業客戶,然後用遠程銀行來實施交叉銷售;
(3)個性化推薦。銀行可以根據客戶的喜歡進行服務或者銀行產品的個性化推薦,如根據客戶的年齡、資產規模、理財偏好等,對客戶群進行精準定位,分析出其潛在金融服務需求,進而有針對性的營銷推廣;
(4)客戶生命周期管理。客戶生命周期管理包括新客戶獲取、客戶防流失和客戶贏回等。如招商銀行通過構建客戶流失預警模型,對流失率等級前20%的客戶發售高收益理財產品予以挽留,使得金卡和金葵花卡客戶流失率分別降低了15個和7個百分點。
3、風險管理與風險控制
在風險管理和控制方麵包括中小企業貸款風險評估和欺詐交易識別等手段
(1)中小企業貸款風險評估。銀行可通過企業的產、流通、銷售、財務等相關信息結合大數據挖掘方法進行貸款風險分析,量化企業的信用額度,更有效的開展中小企業貸款。
(2)實時欺詐交易識別和反洗錢分析。銀行可以利用持卡人基本信息、卡基本信息、交易歷史、客戶歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎(如從一個不經常出現的國家為一個特有用戶轉賬或從一個不熟悉的位置進行在線交易)進行實時的交易反欺詐分析。如IBM金融犯罪管理解決方案幫助銀行利用大數據有效地預防與管理金融犯罪,摩根大通銀行則利用大數據技術追蹤盜取客戶賬號或侵入自動櫃員機(ATM)系統的罪犯。
4、運營優化
(1)市場和渠道分析優化。通過大數據,銀行可以監控不同市場推廣渠道尤其是網路渠道推廣的質量,從而進行合作渠道的調整和優化。同時,也可以分析哪些渠道更適合推廣哪類銀行產品或者服務,從而進行渠道推廣策略的優化。
(2)產品和服務優化:銀行可以將客戶行為轉化為信息流,並從中分析客戶的個性特徵和風險偏好,更深層次地理解客戶的習慣,智能化分析和預測客戶需求,從而進行產品創新和服務優化。如興業銀行目前對大數據進行初步分析,通過對還款數據挖掘比較區分優質客戶,根據客戶還款數額的差別,提供差異化的金融產品和服務方式。
(3)輿情分析:銀行可以通過爬蟲技術,抓取社區、論壇和微博上關於銀行以及銀行產品和服務的相關信息,並通過自然語言處理技術進行正負面判斷,尤其是及時掌握銀行以及銀行產品和服務的負面信息,及時發現和處理問題;對於正面信息,可以加以總結並繼續強化。同時,銀行也可以抓取同行業的銀行正負面信息,及時了解同行做的好的方面,以作為自身業務優化的借鑒。
㈦ 大數據的Hadoop是做什麼的
Hadoop是一個由Apache基金會所開發的分布式系統基礎架構,是用Java語言開發的一個開源分布式計算平台,適合大數據的分布式存儲和計算平台。
Hadoop是目前被廣泛使用的大數據平台,本身就是大數據平台研發人員的工作成果,Hadoop是目前比較常見的大數據支撐性平台。
㈧ 打算成為數據分析師想學習hadoop的知識,不知學到什麼程度。還有需要什麼基礎嗎貴人指點,非常感
目前國內hadoop社區還是非常火的,各種培訓機構也是如雨後春筍,我覺得要做數據分析的話,你只要掌握hadoop使用就行了,當然學習的話肯定要從搭建開發環境開始,然後自己寫MapRece程序,相關的框架hive。hbase也要去學習。。基礎的話,Java。Python。Linux
㈨ hadoop怎麼數據分析
Hadoop被設計用來在大型數據集上能進行有效的工作。Hadoop有一個專為大尺寸文件(如幾G)設計的文件系統(HDFS)。因此,如果你的數據文件尺寸只是幾M的話,建議你合並(通過zip或tar)多個文件到一個文件中,使其尺寸在幾百M到幾G范圍內。HDFS把大文件們拆分存儲到以64MB或128MB或更大的塊單元中。
如果你的數據集相對較小,那它就不會是hadoop的巨型生態系統的最佳使用之地。這需要你去對你的數據比以往理解更多一些,分析需要什麼類型的查詢,看看你的數據是否真得「大」。另一方面,只是通過資料庫的大小來測量數據可能是騙人的,因為你的計算量可能會更大。 有時你可能會做更多的數學計算或分析小數據集的排列,這些可以遠遠大於實際的數據。所以關鍵是要「了解你的數據,並且很清楚它」。你的數據倉庫或是其它數據源中可能擁有數個TB的數據。然而,在建立 Hadoop 集群前,你必須考慮到數據的增長。
㈩ 國內外著名的互聯網公司使用hadoop都做了什麼談HADOOP在大規模數據處理領域的具體應用。
節點數: 15台機器的構成的伺服器集群伺服器配置: 8核CPU,16G內存,1.4T硬碟容量。 HADOOP在網路:HADOOP主要應用日誌分析,同時使用它做一些網頁資料庫的數據挖掘工作。節點數:10 - 500個節點。主要使用了2個集群:一個由1100台節點組成的集群,包括8800核CPU(即每台機器8核),和12000TB的原始存儲(即每台機器12T硬碟)一個有300台節點組成的集群,包括2400核CPU(即每台機器8核),和3000TB的原始存儲(即每台機器12T硬碟)由此基礎上開發了基於SQL語法的項目:HIVE HADOOP在HULU 主要用於日誌存儲和分析13台機器構成的集群 (8核PUC,單台機器:4TB硬碟)基於HBASE資料庫 HADOOP在TWITTER 使用HADOOP用於存儲微博數據,日誌文件和許多中間數據使用基於HADOOP構件的Cloudera's CDH2系統,存儲壓縮後的數據文件(LZO格式) HADOOP在雅虎:主要用於支持廣告系統及網頁搜索機器數:25000,CPU:8核集群機器數: 4000 個節點 (2*4cpu boxes w 4*1TB disk & 16GB RAM)