❶ 羅伯特·恩格爾提出的ARCH模型有什麼樣的地位
為了尋求對股票市場價格波動行為更為准確的描述和分析方法,許多金融學家和計量學家嘗試用不同的模型與方法處理這一問題。其中,恩格爾於1982年提出的ARCH模型,被認為是最集中反映了方差變化特點而被廣泛應用於金融數據時間序列分析的模型。ARCH模型是過去20年內金融計量學發展中最重大的創新。目前所有的波動率模型中,ARCH類模型無論從理論研究的深度還是從實證運用的廣泛性來說都是獨一無二的。
❷ ARCH模型的原理是什麼
ARCH模型的基本思想是指在以前信息集下,某一時刻一個雜訊的發生是服從正態分布。該正態分布的均值為零,方差是一個隨時間變化的量(即為條件異方差)。並且這個隨時間變化的方差是過去有限項雜訊值平方的線性組合(即為自回歸)。這樣就構成了自回歸條件異方差模型。
由於需要使用到條件方差,我們這里不採用恩格爾的比較嚴謹的復雜的數學表達式,而是採取下面的表達方式,以便於我們把握模型的精髓。見如下數學表達:
Yt = βXt+εt (1)其中,
* Yt為被解釋變數,
* Xt為解釋變數,
* εt為誤差項。
如果誤差項的平方服從AR(q)過程,即εt2 =a0+a1εt-12 +a2εt-22 + …… + aqεt-q2 +ηt t =1,2,3…… (2)其中,
ηt獨立同分布,並滿足E(ηt)= 0, D(ηt)= λ2 ,則稱上述模型是自回歸條件異方差模型。簡記為ARCH模型。稱序列εt 服從q階的ARCH的過程,記作εt -ARCH(q)。為了保證εt2 為正值,要求a0 >0 ,ai ≥0 i=2,3,4… 。
上面(1)和(2)式構成的模型被稱為回歸-ARCH模型。ARCH模型通常對主體模型的隨機擾動項進行建模分析。以便充分的提取殘差中的信息,使得最終的模型殘差ηt成為白雜訊序列。
從上面的模型中可以看出,由於現在時刻雜訊的方差是過去有限項雜訊值平方的回歸,也就是說雜訊的波動具有一定的記憶性,因此,如果在以前時刻雜訊的方差變大,那麼在此刻雜訊的方差往往也跟著變大;如果在以前時刻雜訊的方差變小,那麼在此刻雜訊的方差往往也跟著變小。體現到期貨市場,那就是如果前一階段期貨合約價格波動變大,那麼在此刻市場價格波動也往往較大,反之亦然。這就是ARCH模型所具有描述波動的集群性的特性,由此也決定它的無條件分布是一個尖峰胖尾的分布。
❸ ARCH模型在股票收益率分析中的應用是怎樣的
假設用標准差表示的條件波動率在某一期間圍繞0.5%和3%之間波動。如果投資者有一個對應與標准普爾500指數的資產組合,那麼明天該投資者有多少資本面臨損失?假設預測標准差是0.5%,他的損失(99%的概率)將不會超過資產組合價值的1.2%。如果預測標准差是3%,相應的資本損失將高達6.7%。同樣,在銀行和其他金融機構計算資產組合的市場風險時,在險價值(VaR:ValueatRisk)也至關重要。從1996以來,巴塞爾(Basle)國際協議規定了銀行在控制資本充足率時要使用在險價值。ARCH成為金融部門風險評估中不可缺少的工具。
❹ 如何用GARCH(1,1)求股票的具體波動率數據
以哈飛股份(600038)為例,運用GARCH(1,1)模型計算股票市場價值的波動率。
GARCH(1,1)模型為:
(1)
(2)
其中, 為回報系數, 為滯後系數, 和 均大於或等於0。
(1)式給出的均值方程是一個帶有誤差項的外生變數的函數。由於是以前面信息為基礎的一期向前預測方差,所以稱為條件均值方程。
(2)式給出的方程中: 為常數項, (ARCH項)為用均值方程的殘差平方的滯後項, (GARCH項)為上一期的預測方差。此方程又稱條件方差方程,說明時間序列條件方差的變化特徵。
通過以下六步進行求解:
本文選取哈飛股份2009年全年的股票日收盤價,採用Eviews 6.0的GARCH工具預測股票收益率波動率。具體計算過程如下:
第一步:計算日對數收益率並對樣本的日收益率進行基本統計分析,結果如圖1和圖2。
日收益率採用JP摩根集團的對數收益率概念,計算如下:
其中Si,Si-1分別為第i日和第i-1日股票收盤價。
圖1 日收益率的JB統計圖
對圖1日收益率的JB統計圖進行分析可知:
(1)標准正態分布的K值為3,而該股票的收益率曲線表現出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大於正態分布,說明存在著較為明顯的「尖峰厚尾」形態;
(2)偏度值與0有一定的差別,序列分布有長的左拖尾,拒絕均值為零的原假設,不屬於正態分布的特徵;
(3)該股票的收益率的JB統計量大於5%的顯著性水平上的臨界值5.99,所以可以拒絕其收益分布正態的假設,並初步認定其收益分布呈現「厚尾」特徵。
以上分析證明,該股票收益率呈現出非正態的「尖峰厚尾」分布特徵,因此利用GARCH模型來對波動率進行擬合具有合理性。
第二步:檢驗收益序列平穩性
在進行時間序列分析之前,必須先確定其平穩性。從圖2日收益序列的路徑圖來看,有比較明顯的大的波動,可以大致判斷該序列是一個非平穩時間序列。這還需要嚴格的統計檢驗方法來驗證,目前流行也是最為普遍應用的檢驗方法是單位根檢驗,鑒於ADF有更好的性能,故本文採用ADF方法檢驗序列的平穩性。
從表1可以看出,檢驗t統計量的絕對值均大於1%、5%和10%標准下的臨界值的絕對值,因此,序列在1%的顯著水平下拒絕原假設,不存在單位根,是平穩序列,所以利用GARCH(1,1)模型進行檢驗是有效的。
圖2 日收益序列圖
表1ADF單位根檢驗結果
第三步:檢驗收益序列相關性
收益序列的自相關函數ACF和偏自相關函數PACF以及Ljung-Box-Pierce Q檢驗的結果如表3(滯後階數 =15)。從表4.3可以看出,在大部分時滯上,日收益率序列的自相關函數和偏自相關函數值都很小,均小於0.1,表明收益率序列並不具有自相關性,因此,不需要引入自相關性的描述部分。Ljung-Box-Pierce Q檢驗的結果也說明日收益率序列不存在明顯的序列相關性。
表2自相關檢驗結果
第四步:建立波動性模型
由於哈飛股份收益率序列為平穩序列,且不存在自相關,根據以上結論,建立如下日收益率方程:
(3)
(4)
第五步:對收益率殘差進行ARCH檢驗
平穩序列的條件方差可能是常數值,此時就不必建立GARCH模型。故在建模前應對收益率的殘差序列εt進行ARCH檢驗,考察其是否存在條件異方差,收益序列殘差ARCH檢驗結果如表3。可以發現,在滯後10階時,ARCH檢驗的伴隨概率小於顯著性水平0.05,拒絕原假設,殘差序列存在條件異方差。在條件異方差的理論中,滯後項太多的情況下,適宜採用GARCH(1,1)模型替代ARCH模型,這也說明了使用GARCH(1,1)模型的合理性。
表3日收益率殘差ARCH檢驗結果
第六步:估計GARCH模型參數,並檢驗
建立GARCH(1,1)模型,並得到參數估計和檢驗結果如表4。其中,RESID(-1)^2表示GARCH模型中的參數α,GARCH(-1)表示GARCH模型中的參數β,根據約束條件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,滿足約束條件。同時模型中的AIC和SC值比較小,可以認為該模型較好地擬合了數據。
表4日收益率波動率的GARCH(1,1)模型的參數估計
❺ 什麼是arch模型和garch模型
1、ARCH模型(Autoregressive conditional heteroskedasticity model)全稱「自回歸條件異方差模型」,解決了傳統的計量經濟學對時間序列變數的第二個假設(方差恆定)所引起的問題。
2、GARCH模型稱為廣義ARCH模型,是ARCH模型的拓展,由Bollerslev(1986)發展起來的。
(1)GARCH模型(波勒斯勒夫(Bollerslev),1986年)。GARCH(p,q)模型為:
(5)arch模型分析股票擴展閱讀:
GARCH的發展:
傳統的計量經濟學對時間序列變數的第二個假設:假定時間序列變數的波動幅度(方差)是固定的,不符合實際,比如,人們早就發現股票收益的波動幅度是隨時間而變化的,並非常數。這使得傳統的時間序列分析對實際問題並不有效。
羅伯特·恩格爾在1982年發表在《計量經濟學》雜志(Econometrica)的一篇論文中提出了ARCH模型解決了時間序列的波動性(volatility)問題,當時他研究的是英國通貨膨脹率的波動性。
❻ 關於用eviews軟體分析股票的hedge ratio,哪位大神可以幫忙啊~
那model很多的,具體操作很多,雖然不是太復雜
❼ 羅伯特·恩格爾提出的ARCH模型對金融領域有什麼影響
在關於ARCH的第一篇文章中,恩格爾使用了時變性的波動率模型來研究通貨膨脹。然而不久以後,人們發現ARCH最重要的應用在金融領域,因為金融市場中的活動就是對不同類型的風險進行處置和定價。在實際應用中,條件方差的變化有時會直接影響被解釋變數條件期望的值。例如,在考慮風險與投資回報之間的關系時,由於投資者是依據當前信息而持有證券,當風險(條件方差)增大時,投資者要求的投資補償也就大。因此,條件方差的變化也會影響收益率條件期望的變化。與其他研究者合作,恩格爾在ARCH的基礎上,建立了ARCH-M模型來分析時變風險的收益補償。期望收益率取決於時變性的方差和協方差,從而自身也隨時間變化。