㈠ 3分鍾了解深度學習跟量化交易是什麼關系
機器學習怎樣應用於量化交易(一)
曾有朋友問過,國內現在量化領域機器學習應用的少,是否因為效果不如簡單的策略。其實,把機器學習應用在量化交易上始終面臨著兩難,卻並不是無解的兩難。很多時候並不是機器學習不work,而是真正懂如何用正確科學的統計思維使用Machine Learning的人才太少。機器學習涉及到特徵選擇、特徵工程、模型選擇、數據預處理、結果的驗證和分析等一整套建模流程,廣義角度來說就不單單是模型選擇的問題。所以,如果認為「用支持向量機成功預測股票漲跌」 這樣的研究,就是把機器學習應用於量化交易,這種狹義的認識無疑是買櫝還珠,對機器學習領域散落遍地的珍珠視而不見。如果把機器學習的崛起放在歷史進程中考量,無非就是趨勢的延續:現在,可通過系統的數據分析證實過去模糊不定的經驗,機器學習演算法將未曾被察覺的規律得以浮現紙面。在我看來,未來的發展概有兩個方向:1.針對量化交易的統計學習演算法被提出,使其適合於雜訊大,分布不穩定的金融數據分析;2.對於機器學習的熱情回歸理性,從工具為導向回歸到問題為導向。針對如何以問題為導向,在機器學習演算法中挑選合適的工具,分享一些思路。1.多因子模型的因子權重計算當我們在構建多因子模型且已經選定了一系列因子之後,要如何根據不同的市場情況調整各個因子的權重呢?在以往的研究中發現,與其它演算法相比較,隨機森林演算法對於存在非線性、噪音和自變數共線性的訓練集的分析結果更出色。所以,目前在多因子模型的權重上,採用當期收益率對上期因子進行隨機森林回歸分析,以確定下一期多因子模型的因子權重。2.缺失值處理處理缺失值在金融的量化分析中是個無可避免的問題。選取合理的缺失值處理方法,依賴於數據本身的特點、數據缺失的情況、其對應的經濟學意義,以及我們需要使用數據進行何種計算。在嘗試構建多因子模型時,我們選擇了兩種缺失值替換方法:(1)採用期望最大化演算法 來用同一變數的已知數據對缺失值進行極大似然估計。(2)把模型中包含的所有因子作為特徵變數,並賦予其相同的權重,再採用機器學習中的K-近鄰演算法來尋找最相似的標的,保證缺失值替換後,不會強化一部分因子的影響力。其實在量化領域,機器學習解決著線性模型天生的缺陷或弊端,所以還是有著很深的介入的。除去凸優化、降維(提取市場特徵)等領域的應用,目前「非動態性」和「非線性」是兩個重要的弊端。金融關系之間並非靜態,很多時候也不是線性的。統計學習的優勢此時就會體現出來,它們能夠迅速地適應市場,或者用一種更「准確的」方式來描述市場。在國內,機器學習在量化內應用跟領域有很大的關系,跟頻率也有很大的關系。比如,CTA的運用可能就要多於股票,它處理數據的維度要遠小於股票,獲取市場的長度和動態又強於股票。股票市場的momentum要弱於期貨市場的momentum,它的趨勢與股票相比更明顯和低雜訊。這些特徵對於機器學習發揮作用都更加有利。很可能國內一些交易執行演算法的設計上就借鑒了機器學習。我們可以通過學習訂單薄特徵,對下一期盤口變化做一些概率上的預測,經過一定樣本的訓練之後,可以顯著地提升演算法表現。而我仍謹慎看好深度學習等機器學習方法的原因在於,在認識市場上,現行的大部分方法與這些方法並不在一個維度上,這個優勢讓它們與其他方法相比,捕捉到更多的收益。也就是說,一個新的認識市場的角度才能帶來alpha。
㈡ 怎樣讓《機器學習》進行股票分析,提煉出規律
你好,這個要求太高了,目前的程序化或者機器人的深度學習都還沒有到這種地步。建議參考券商的程序化交易,來不斷提煉規律
㈢ 深度學習炒股會賺錢嗎
炒股和勤奮有關系,炒股和學習有關系。但是關系都非常非常的小。
炒股賺錢,最大的關系是資金,和運氣。
謝謝你的提問
望採納
㈣ 華力創通是深度學習概念股嗎
不是。
根據通達信資訊提示,華力創通的大智慧板塊類型分別是: 北斗導航概念、創業板概念、航天軍工概念、軍民融合概念、物聯網概念、晶元概念概念、虛擬現實概念、增強現實概念、智能汽車概念、中盤概念、專用設備概念、自主可控概念。
㈤ 深度學習做股票預測靠譜嗎
靠譜 但前提是你學習的技術分析籌碼分析是正確的,而不是隨便買書或者網上查資料那種
舉個例子吧 你在書上和網上看到陽線吞噬怎麼解釋的? 簡單說也就是陽包陰
都是看漲看多吧
大盤4月11日 8月7日都是陽包陰 然後怎麼走的?
你要學的是可以提前分析預判並且有大概率正確的知識 比如以下這些
7月28分析華新水泥短線會過13.7 8月10日收盤14.04.
㈥ 深度學習在量化投資方面都有哪些可以借鑒應用的地方
量化投資只要是看股票成交量價格的變化,如果成交量持續放大,說明股價上漲不是由莊家推動的,而是廣大買盤的一種合力作用
㈦ 人工智慧深度學習未來能破解彩票股票行業嗎
人工智慧很厲害,但不代表萬能;
更多的破解答案可能是告訴你:概率是多大;
把全部彩票買下來,你一定中獎,買一半,50%。
類似男超人什麼時候可以生孩子的問題。
㈧ 運用深度學習演算法來炒股是不是會提高預測的准確率
是的呢,RC智能雲 比較好用
㈨ 深度學習方法能用來炒股嗎
不能。
炒股主要是跟人性做斗爭,而不是深度學習。
經濟學教授炒股虧得一塌糊塗的多了去了。