A. 托福閱讀背景知識:地球最早是怎麼產生生物
托福真題再現:
版本一
1,地球早起大氣成分及生物 早起甲烷與二氧化碳佔主要地位,沒有氧氣。因為有了會光合作用的細菌,產生了大量氧氣,消耗二氧化碳,提供臭氧層,為當今新生物鍾提供必要環境。
版本二
有一個講地球最早怎麼產生生物的
大概有幾點,首先是太陽當時不夠熱,地球當時氣體組成像火山的,主要靠兩種氣體加溫度,似乎一種是二氧化碳另一種是m開頭的不認識
那種氣體組成不適合生命也沒什麼氧,當時的organism有很大作用,進行光合作用產生氧氣吸收二氧化碳,二氧化碳還有一部分被轉移成非氣態的,這樣就形成了後來的大氣組成
氧氣可以形成臭氧層,保護生物不受紫外線輻射,這塊提到了火星等其他星球就沒有臭氧層或者臭氧不夠多blabla不記得了,反正當時生物都去海里了因為水可以吸收紫外線輻射保護它們
威學一百解析:本文屬於生命起源類型,是托福閱讀資歷很老的話題之一,寫作角度涉及到巴斯德實驗、生命起源的幾種假說,以及過程的描述,同學在閱讀中的難點是要克服對生僻詞彙和背景知識的恐懼心理,這些都可以通過多讀和精讀來實現。
參考閱讀:
There is no truly "standard" model of the origin of life. But most currently accepted modelsbuild in one way or another upon a number of discoveries about the origin of molecular andcellular components for life, which are listed in a rough order of postulated emergence:
1. Plausible pre-biotic conditions result in the creation of certain basic small molecules(monomers) of life, such as amino acids. This was demonstrated in the Miller-Urey experimentby Stanley L. Miller and Harold C. Urey in 1953, although it is now generally held that theirlaboratory conditions did not reflect the original Earth's atmosphere.
2. Phospholipids (of an appropriate length) can spontaneously form lipid bilayers, a basiccomponent of the cell membrane.
3. The polymerization of nucleotides into random RNA molecules might have resulted inself-replicating ribozymes (RNA world hypothesis).
4. Selection pressures for catalytic efficiency and diversity result in ribozymes, whichcatalyse peptidyl transfer (hence formation of small proteins), since oligopeptides complexwith RNA to form better catalysts. Thus the first ribosome is born, and protein synthesisbecomes more prevalent.
5. Protein out-compete ribozymes in catalytic ability, and therefore become the dominantbiopolymer. Nucleic acids are restricted to predominantly genomic use.
There are many different hypotheses regarding the path that might have been taken fromsimple organic molecules to protocells and metabolism. Many models fall into the "genes-first"category or the "metabolism-first" category, but a recent trend is the emergence of hybridmodels.
The origin of the basic biomolecules, while not settled, is less controversial than thesignificance and order of steps 2 and 3. The basic chemicals from which life was thought to haveformed are commonly held to be methane (CH4), ammonia (NH3), water (H2O), hydrogensulfide (H2S), carbon dioxide (CO2) or carbon monoxide (CO), and phosphate (PO43-).Molecular oxygen (O2) and ozone (O3) typically are considered to have been either rare orabsent.
As of 2007, no one had yet synthesized a "protocell" using basic components that wouldhave the necessary properties of life (the so-called "bottom-up-approach"). Without such aproof-of-principle, explanations have tended to be short on specifics. However, someresearchers working in this field have argued that a "top-down approach" is more feasible.One such approach involves engineering existing prokaryotic cells with progressively fewergenes, attempting to discern at which point the most minimal requirements for life werereached. The biologist John Desmond Bernal coined the term biopoesis for this process, andsuggested that there were a number of clearly defined "stages" that could be recognized inexplaining the origin of life.
Stage 1: The origin of biological monomers
Stage 2: The origin of biological polymers
Stage 3: The evolution from molecules to cell
Bernal suggested that Darwinian evolution may have commenced early, some time betweenStage 1 and 2.
B. muc1粘蛋白的MUC1的分子生物學和生物化學
MUC1又名PEM(polymorphic epithelial mucin), PUM(peanut lectin binding urinary mucins), DF3, MAM-6, CA 15-3等, 其不同的命名是由於對其分離和檢測的方法等的不同而來, 其cDNA克隆是通過篩選從乳腺癌、胰腺癌等細胞系構建的cDNA表達文庫而得到的。人MUC1基因定位於染色體1q21, 含有7個外顯子。MUC1基因的一個重要特徵是其多態性(polymorphism), 即其第2個外顯子中含有許多連續重復序列(variable number of tandem repeats, VNTRs),每個VNTR含有60個鹼基, 富含GC, 不同人的VNTRs數量從20~125不等,最常見的2個等位基因分別含有41和85個VNTRs, 同一個體的不同等位基因其VNTRs的數量也可能不同, 而小鼠的MUC1基因無此多態性。MUC1的這一特徵表明它是一種典型的小衛星序列(minisatellite sequence)。近期研究結果推測, 小衛星重復單位數量的變化主要是由種系復合基因轉變事件造成的。
不同種屬的MUC1基因的差別主要表現在VNTRs的組成不同,但某些區域的組成卻是保守的, 如人和小鼠(MUC1)基因的比較研究表明, 轉錄起始位點上游500 bp內的轉錄起始區, 特別是TATA盒上游區域結構是高度保守的, 這可能與MUC1在上皮性細胞中的特異性表達有關。 MUC1基因的編碼產物MUC1粘蛋白是一種高分子量糖蛋白(>200 kD), 其基本特徵:① 糖鏈占整個粘蛋白含量的50%以上, 且多以O-糖苷鍵與多肽骨架上的Ser/Thr相連; ② 多肽骨架中含有PTS區, 即富含Pro(P),Thr(T)和Ser(S)3種氨基酸的區域, 這3種氨基酸占整個肽鏈氨基酸含量的20%~55%,此區內含有許多連續重復肽鏈序列, 所有的O-糖基化位點均位於這些序列中。
MUC1的多肽骨架由胞外段、跨膜段和胞內段3部分組成, 跨膜段和胞內段(含72個氨基酸),在不同種間其結構是高度保守的, 表明它們在MUC1的功能發揮上可能起重要作用; 胞外段含有20~125個連續重復序列, 每個重復序列含有20個氨基酸, 即PDTRPAPGSTAPPAHGVTSA, 其中S,T,A,G,P 5種氨基酸佔50%以上, P對MUC1空間結構的形成從而對其免疫原性的決定起重要作用。不同個體間連續重復序列數量的不同是由MUC1基因的多態性所決定的, 因此,胞外段長短可從400~2 500氨基酸不等, 每個連續重復序列中含有5個潛在的O-糖基化位點, 其中的4個可發生O-糖基化反應, S,T相鄰是糖基化的必要條件。
糖鏈多以O型糖苷鍵與多肽骨架連接。每條糖鏈含有1~20個單糖,以GalNAc(15.0%), GluNAc (19.8%), Gal(44.9%),Fuc(8.9%)和SA(11.4%)最為常見,由核心區、骨架區和外周區組成。核心區是指與多肽骨架上的Ser/Thr相連的GalNAc及直接與GalNAc相連的糖鏈部分; 骨架區分為Ⅰ型(Galα-3GlcNAc)和Ⅱ型(Galα-4GlcNAc1-3)2種, Ⅰ型結構一般單個存在, 而Ⅱ型可多個同時存在; 外周區是指骨架區末端以α-糖苷鍵連接的Gal, GalNAc, Fuc, SA及硫酸基, 這些基團在決定MUC1的生化特性(如電荷等)和功能方面起重要作用。末端糖基的加入對糖鏈的延伸起終止作用, 同時也產生了某些糖鏈表位, 如血型抗原A, B和H, Lea和Leb, X, Y及Cd抗原決定簇。由於含28個氨基酸的肽鏈O-糖基化後長度為7 nm, 因此, MUC1胞外段的長度約為240~630 nm, 是細胞表面最先與機體免疫系統接觸的膜表面分子之一。 研究表明,MUC1基因的表達主要在轉錄水平進行調控。這種調控作用是通過MUC1啟動子上的順式作用元件和細胞中的轉錄因子間的相互作用來實現的。MUC1的啟動子序列約2.9 kb,其中,發揮調控作用的順式作用元件主要位於5′開放區743 bp的序列范圍內。MUC1啟動子含有2個Sp1結合位點(GGGGC GGGG),分別位於-576/-568和-99/-90,另外,-101/
-89處有1個SpA結合位點(AGGGGCGGGGTT),-84/-64有1個E-box(E-MUC1)。Sp1與其結合位點的相互作用可促進MUC1基因的表達,而SpA則下調其表達。Sp1和SpA的比例可能是決定MUC1基因表達水平的一個重要因素。腫瘤細胞MUC1的高水平表達,可能與二者之間的調控失調有關。Sp1位點與E-box(E-MUC1)可能與MUC1的組織特異性表達有關。最新分析表明,MUC1啟動子中含有乳腺特異性、造血細胞特異性、B細胞特異性、T細胞特異性、肝細胞特異性、肌細胞特異性順式作用元件,這與最近報道的MUC1在除上皮組織外的多種組織和細胞中表達是一致的,MUC1啟動子含有多樣性的順式作用元件,是目前已知真核啟動子中比較獨特的一種。對其結構及其與轉錄因子間相互作用的研究,對於闡明MUC1基因在腫瘤發生、發展中的作用並為腫瘤治療提供新的線索具有重要意義。
對於MUC1基因轉錄後的選擇性剪切而形成不同同種型的機制,目前還不清楚。由於MUC1/Y具有腫瘤特異性表達的特點,因此,這種選擇性剪切可能與細胞的癌變有一定的關系。 目前的研究表明,MUC1即可誘發抗鬃瘤的CTL免疫應答(MHC限制性和非MHC限制性),同時又可抑制免疫活性細胞對腫瘤的殺傷作用,高水平的MUC1表達與腫瘤患者的預後呈負相關,提示MUC1可能參與免疫應答的調節。
Finn的研究小組首先發現在乳腺癌、卵巢癌、胰腺癌患者體內存在可殺傷腫瘤細胞的CTL,其特點為非MHC限制性。隨後他們又在乳腺癌患者中發現了具有MHCⅠ限制性的識別MUC1表位的CTL。這些現象也在小鼠體內得到了進一步的驗證。正是上述發現使MUC1成為一種腫瘤生物治療的靶分子。 如上所述, MUC1在癌變時可發生量和質的改變, 出現新的抗原表位, 同時, 由於MUC1是最先與機體免疫系統接觸的細胞表面分子之一,腫瘤MUC1可以非MHC限制性和MHC限制性方式活化CTLs,這些活化的CTLs可殺傷表達MUC1的腫瘤細胞。因此, MUC1是腫瘤主動特異性免疫治療(active specific immunotherapy)理想的靶分子。
目前, 有多種基於MUC1的免疫原作為疫苗用於腫瘤治療的研究, 有些已經進入臨床實驗階段。 自MUC1發現以來,已有多家研究機構制備了多種MUC1單克隆抗體,其中56株已得到國際腫瘤生物醫學協會(ISOBM)的確認(見表1),這些抗體中的大多
表1ISOBM確認的MUC1單克隆抗體
ISOBM編號 單抗名稱 研製單位 研究者 同種型
ISOBM-122 Ma 552 CanAg Nilsson, O. IgG1
ISOBM-123 BC3 Austin Research Institute McKenzie I. IgM
ISOBM-124 HMPV Austin Research Institute McKenzie I. IgM
ISOBM-125 VU- 3-C6 Univ. Hosp. 「Vrije Universiteit」 Hilgers, J. IgG1
ISOBM-126 VU-12-E1 Univ. Hosp. 「Vrije Universiteit」 Hilgers, J. IgG1
ISOBM-127 SH1 University of Copenhagen Clausen, H. IgG3-k
ISOBM-128 DH-1 Austin Research Institute McKenzie I. IgM
ISOBM-129 MF06 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-130 VU-11-D1 Univ. Hosp. 「Vrije Universiteit」 Hilgers, J. IgG1
ISOBM-131 VA1 Austin Research Institute McKenzie I. IgG1
ISOBM-132 MF30 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-133 BCP 8 Austin Research Institute McKenzie I. IgG2b
ISOBM-134 BW 835 Behringwerke AG Schelp, C. IgG1
ISOBM-135 SMA-1 Austin Research Institute McKenzie I. IgM
ISOBM-136 DF3 Centocor Cornillie, F. IgG1
ISOBM-137 27.1 Austin Research Institute McKenzie I. IgG1
ISOBM-138 BC2 Austin Research Institute McKenzie I. IgG1
ISOBM-139 B27.29 Biomira Inc. Craig, D. IgG1
ISOBM-140 VU- 3-D1 Univ. Hosp. 「Vrije Universiteit」 Hilgers, J. IgG1
ISOBM-141 BCP 7 Austin Research Institute McKenzie I. IgG2a
ISOBM-142 7540MR Bayer Yeung, K. IgG1
ISOBM-143 M26 Sanofi IgM+G1-k
ISOBM-144 VU- 4-H5 Univ. Hosp. 「Vrije Universiteit」 Hilgers, J. IgG1
ISOBM-145 3E1.2 Austin Research Institute McKenzie I. IgM
ISOBM-146 232A1 Netherlands Cancer Institute Hilkens, J. IgG1
ISOBM-147 BCP 9 Austin Research Institute McKenzie I. IgG1
ISOBM-148 115 D8 Centocor Cornillie, F. IgG2b-k
ISOBM-149 MF11 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-150 KC4 Immunotech SA Agthoven, A. Van IgG3
ISOBM-151 5F4 University of Copenhagen Clausen, H. IgM
ISOBM-152 M29 Sanofi IgG1-k
ISOBM-153 BC4E549 Hybritech Inc. Rittenhouse, H. IgG1-k
ISOBM-154 Ma 695 CanAg Nilsson, O. IgG1
ISOBM-155 Sec1 Austin Research Institute McKenzie I. IgG2b
ISOBM-156 VU-11-E2 Univ. Hosp. 「Vrije Universiteit」 Hilgers, J. IgG1
ISOBM-157 HH 6 University of Copenhagen Clausen, H. IgG3-k
ISOBM-158 M38 Sanofi IgG1-k
ISOBM-159 E29 Dako A/S Askaa, J. IgG2a
ISOBM-160 HH14 University of Copenhagen Clausen, H. IgM
ISOBM-161 GP1.4 Immunotech SA Agthoven, A. van IgG1
ISOBM-162 214D4 Netherlands Cancer Institute Hilkens, J. IgG1
ISOBM-163 43 Austin Research Institute McKenzie I. IgM
ISOBM-164 CC2 Austin Research Institute McKenzie I. IgM
ISOBM-165 SM3 Imperial Cancer Research Fund Burchell, J. IgG1
ISOBM-166 12C10 Transgene SA Acres, B. IgG1-k
ISOBM-167 FH6 University of Copenhagen Clausen, H. IgM
ISOBM-168 BC5N154 Hybritech Inc. Rittenhouse, H. IgM
ISOBM-169 HMFG-1 Imperial Cancer Research Fund Burchell, J. IgG1
ISOBM-170 VA2 Austin Research Institute McKenzie I. IgG1
ISOBM-171 B12 Roche Diagnostic Systems Pfleiderer, P. IgG1
ISOBM-172 C595 University of Nothingham Price, M. IgG3
ISOBM-173 BCRU-G7 Norwegian Radium Hospital Rye, P. IgM
ISOBM-174 BCP10 Austin Research Institute McKenzie I. IgM
ISOBM-175 MC5 Immunotech SA Agthoven, A. van IgG1-k
ISOBM-176 7539MR Bayer Yeung, K. IgG2b
ISOBM-177 A76-A/C7 Max Delbrueck Centre f. Mol.Med. Karsten, U. IgG1+M-k
數的識別表位位於MUC1 VNTRs中的APDTRPAPG區域,如BC2識別APDTR,HMFG1識別PDTR等。由於MUC1在腫瘤細胞表面的高度異常表達,使其成為一種潛在的腫瘤靶向治療的靶分子。目前已有多個實驗室在利用MUC1單抗進行腫瘤治療的研究。
C. 求 一切關於生物電腦 biological computer 的外文文章(english)
Advanced biological computer developed
Date: May 23, 2013
Source: American Technion Society
Microprocessor with DNA (illustration). Scientists have developed and constructed an advanced biological transcer, a computing machine capable of manipulating genetic codes, and using the output as new input for subsequent computations
Using only biomolecules (such as DNA and enzymes), scientists at the Technion-Israel Institute of Technology have developed and constructed an advanced biological transcer, a computing machine capable of manipulating genetic codes, and using the output as new input for subsequent computations. The breakthrough might someday create new possibilities in biotechnology, including indivial gene therapy and cloning.
The findings appear today (May 23, 2013) in Chemistry & Biology (Cell Press).
Interest in such biomolecular computing devices is strong, mainly because of their ability (unlike electronic computers) to interact directly with biological systems and even living organisms. No interface is required since all components of molecular computers, including hardware, software, input and output, are molecules that interact in solution along a cascade of programmable chemical events.
"Our results show a novel, synthetic designed computing machine that computes iteratively and proces biologically relevant results," says lead researcher Prof. Ehud Keinan of the Technion Schulich Faculty of Chemistry. "In addition to enhanced computation power, this DNA-based transcer offers multiple benefits, including the ability to read and transform genetic information, miniaturization to the molecular scale, and the aptitude to proce computational results that interact directly with living organisms."
The transcer could be used on genetic material to evaluate and detect specific sequences, and to alter and algorithmically process genetic code. Similar devices, says Prof. Keinan, could be applied for other computational problems.
"All biological systems, and even entire living organisms, are natural molecular computers. Every one of us is a biomolecular computer, that is, a machine in which all components are molecules "talking" to one another in a logical manner. The hardware and software are complex biological molecules that activate one another to carry out some predetermined chemical tasks. The input is a molecule that undergoes specific, programmed changes, following a specific set of rules (software) and the output of this chemical computation process is another well defined molecule."
Also contributing to the research were postdoctoral fellows Dr. Tamar Ratner and Dr. Ron Piran of the Technion's Schulich Faculty of Chemistry, and Dr. Natasha Jonoska of the Department of Mathematics at the University of South Florida.
Story Source:
The above story is based on materials provided by American Technion Society. The original article was written by Kevin Hattori.Note: Materials may be edited for content and length.
Journal Reference:
Tamar Ratner, Ron Piran, Natasha Jonoska, Ehud Keinan. Biologically Relevant Molecular Transcer with Increased Computing Power and Iterative Abilities. Chemistry & Biology, 2013; 20 (5): 726 DOI: 10.1016/j.chembiol.2013.02.016
D. 生物化學名詞解釋英文版
第一章
1,氨基酸(amino acid):是含有一個鹼性氨基和一個酸性羧基的有機化合物,氨基一般連在α-碳上。
2,必需氨基酸(essential amino acid):指人(或其它脊椎動物)(賴氨酸,蘇氨酸等)自己不能合成,需要從食物中獲得的氨基酸。
3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎動物)自己能由簡單的前體合成
不需要從食物中獲得的氨基酸。
4,等電點(pI,isoelectric point):使分子處於兼性分子狀態,在電場中不遷移(分子的靜電荷為零)的pH值。
5,茚三酮反應(ninhydrin reaction):在加熱條件下,氨基酸或肽與茚三酮反應生成紫色(與脯氨酸反應生成黃色)化合物的反應。
6,肽鍵(peptide bond):一個氨基酸的羧基與另一個的氨基的氨基縮合,除去一分子水形成的醯氨鍵。
7,肽(peptide):兩個或兩個以上氨基通過肽鍵共價連接形成的聚合物。
8,蛋白質一級結構(primary structure):指蛋白質中共價連接的氨基酸殘基的排列順序。
9,層析(chromatography):按照在移動相和固定相 (可以是氣體或液體)之間的分配比例將混合成分分開的技術。
10,離子交換層析(ion-exchange column)使用帶有固定的帶電基團的聚合樹脂或凝膠層析柱
11,透析(dialysis):通過小分子經過半透膜擴散到水(或緩沖液)的原理,將小分子與生物大分子分開的一種分離純化技術。
12,凝膠過濾層析(gel filtration chromatography):也叫做分子排阻層析。一種利用帶孔凝膠珠作基質,按照分子大小分離蛋白質或其它分子混合物的層析技術。
13,親合層析(affinity chromatograph):利用共價連接有特異配體的層析介質,分離蛋白質混合物中能特異結合配體的目的蛋白質或其它分子的層析技術。
14,高壓液相層析(HPLC):使用顆粒極細的介質,在高壓下分離蛋白質或其他分子混合物的層析技術。
15,凝膠電泳(gel electrophoresis):以凝膠為介質,在電場作用下分離蛋白質或核酸的分離純化技術。
16,SDS-聚丙烯醯氨凝膠電泳(SDS-PAGE):在去污劑十二烷基硫酸鈉存在下的聚丙烯醯氨凝膠電泳。SDS-PAGE只是按照分子的大小,而不是根據分子所帶的電荷大小分離的。
17,等電聚膠電泳(IFE):利用一種特殊的緩沖液(兩性電解質)在聚丙烯醯氨凝膠製造一個pH梯度,電泳時,每種蛋白質遷移到它的等電點(pI)處,即梯度足的某一pH時,就不再帶有凈的正或負電荷了。
18,雙向電泳(two-dimensional electrophorese):等電聚膠電泳和SDS-PAGE的組合,即先進行等電聚膠電泳(按照pI)分離,然後再進行SDS-PAGE(按照分子大小分離)。經染色得到的電泳圖是二維分布的蛋白質圖。
19,Edman降解(Edman degradation):從多肽鏈游離的N末端測定氨基酸殘基的序列的過程。N末端氨基酸殘基被苯異硫氰酸酯修飾,然後從多肽鏈上切下修飾的殘基,再經層析鑒定,餘下的多肽鏈(少了一個殘基)被回收再進行下一輪降解循環。
20,同源蛋白質(homologous protein):來自不同種類生物的序列和功能類似的蛋白質,例如血紅蛋白。
第二章
1,構形(configuration):有機分子中各個原子特有的固定的空間排列。這種排列不經過共價鍵的斷裂和重新形成是不會改變的。構形的改變往往使分子的光學活性發生變化。
2,構象(conformation):指一個分子中,不改變共價鍵結構,僅單鍵周圍的原子放置所產生的空間排布。一種構象改變為另一種構象時,不要求共價鍵的斷裂和重新形成。構象改變不會改變分子的光學活性。
3,肽單位(peptide unit):又稱為肽基(peptide group),是肽鍵主鏈上的重復結構。是由參於肽鏈形成的氮原子,碳原子和它們的4個取代成分:羰基氧原子,醯氨氫原子和兩個相鄰α-碳原子組成的一個平面單位。
4,蛋白質二級結構(protein在蛋白質分子中的局布區域內氨基酸殘基的有規則的排列。常見的有二級結構有α-螺旋和β-折疊。二級結構是通過骨架上的羰基和醯胺基團之間形成的氫鍵維持的。
5,蛋白質三級結構(protein tertiary structure): 蛋白質分子處於它的天然折疊狀態的三維構象。三級結構是在二級結構的基礎上進一步盤繞,折疊形成的。三級結構主要是靠氨基酸側鏈之間的疏水相互作用,氫鍵,范德華力和鹽鍵維持的。
6,蛋白質四級結構(protein quaternary structure):多亞基蛋白質的三維結構。實際上是具有三級結構多肽(亞基)以適當方式聚合所呈現的三維結構。
7,α-螺旋(α-heliv):蛋白質中常見的二級結構,肽鏈主鏈繞假想的中心軸盤繞成螺旋狀,一般都是右手螺旋結構,螺旋是靠鏈內氫鍵維持的。每個氨基酸殘基(第n個)的羰基與多肽鏈C端方向的第4個殘基(第4+n個)的醯胺氮形成氫鍵。在古典的右手α-螺旋結構中,螺距為0.54nm,每一圈含有3.6個氨基酸殘基,每個殘基沿著螺旋的長軸上升0.15nm.
8, β-折疊(β-sheet): 蛋白質中常見的二級結構,是由伸展的多肽鏈組成的。折疊片的構象是通過一個肽鍵的羰基氧和位於同一個肽鏈的另一個醯氨氫之間形成的氫鍵維持的。氫鍵幾乎都垂直伸展的肽鏈,這些肽鏈可以是平行排列(由N到C方向)或者是反平行排列(肽鏈反向排列)。
9,β-轉角(β-turn):也是多肽鏈中常見的二級結構,是連接蛋白質分子中的二級結構(α-螺旋和β-折疊),使肽鏈走向改變的一種非重復多肽區,一般含有2~16個氨基酸殘基。含有5個以上的氨基酸殘基的轉角又常稱為環(loop)。常見的轉角含有4個氨基酸殘基有兩種類型:轉角I的特點是:第一個氨基酸殘基羰基氧與第四個殘基的醯氨氮之間形成氫鍵;轉角Ⅱ的第三個殘基往往是甘氨酸。這兩種轉角中的第二個殘侉大都是脯氨酸。
10,超二級結構(super-secondary structure):也稱為基元(motif).在蛋白質中,特別是球蛋白中,經常可以看到由若干相鄰的二級結構單元組合在一起,彼此相互作用,形成有規則的,在空間上能辨認的二級結構組合體。
11,結構域(domain):在蛋白質的三級結構內的獨立折疊單元。結構域通常都是幾個超二級結構單元的組合。
12,纖維蛋白(fibrous protein):一類主要的不溶於水的蛋白質,通常都含有呈現相同二級結構的多肽鏈許多纖維蛋白結合緊密,並為 單個細胞或整個生物體提供機械強度,起著保護或結構上的作用。
13,球蛋白(globular protein):緊湊的,近似球形的,含有折疊緊密的多肽鏈的一類蛋白質,許多都溶於水。典形的球蛋白含有能特異的識別其它化合物的凹陷或裂隙部位。
14,角蛋白(keratin):由處於α-螺旋或β-折疊構象的平行的多肽鏈組成不溶於水的起著保護或結構作用蛋白質。
15,膠原(蛋白)(collagen):是動物結締組織最豐富的一種蛋白質,它是由原膠原蛋白分子組成。原膠原蛋白是一種具有右手超螺旋結構的蛋白。每個原膠原分子都是由3條特殊的左手螺旋(螺距0.95nm,每一圈含有3.3個殘基)的多肽鏈右手旋轉形成的。
16,疏水相互作用(hydrophobic interaction):非極性分子之間的一種弱的非共價的相互作用。這些非極性的分子在水相環境中具有避開水而相互聚集的傾向。
17,伴娘蛋白(chaperone):與一種新合成的多肽鏈形成復合物並協助它正確折疊成具有生物功能構向的蛋白質。伴娘蛋白可以防止不正確折疊中間體的形成和沒有組裝的蛋白亞基的不正確聚集,協助多肽鏈跨膜轉運以及大的多亞基蛋白質的組裝和解體。
18,二硫鍵(disulfide bond):通過兩個(半胱氨酸)巰基的氧化形成的共價鍵。二硫鍵在穩定某些蛋白的三維結構上起著重要的作用。
19,范德華力(van der Waals force):中性原子之間通過瞬間靜電相互作用產生的一弱的分子之間的力。當兩個原子之間的距離為它們范德華力半徑之和時,范德華力最強。強的范德華力的排斥作用可防止原子相互靠近。
20,蛋白質變性(denaturation):生物大分子的天然構象遭到破壞導致其生物活性喪失的現象。蛋白質在受到光照,熱,有機溶濟以及一些變性濟的作用時,次級鍵受到破壞,導致天然構象的破壞,使蛋白質的生物活性喪失。
21,肌紅蛋白(myoglobin):是由一條肽鏈和一個血紅素輔基組成的結合蛋白,是肌肉內儲存氧的蛋白質,它的氧飽和曲線為雙曲線型。
22,復性(renaturation):在一定的條件下,變性的生物大分子恢復成具有生物活性的天然構象的現象。
23,波爾效應(Bohr effect):CO2濃度的增加降低細胞內的pH,引起紅細胞內血紅蛋白氧親和力下降的現象。
24,血紅蛋白(hemoglobin): 是由含有血紅素輔基的4個亞基組成的結合蛋白。血紅蛋白負責將氧由肺運輸到外周組織,它的氧飽和曲線為S型。
25,別構效應(allosteric effect):又稱為變構效應,是寡聚蛋白與配基結合改變蛋白質的構象,導致蛋白質生物活性喪失的現象。
26,鐮刀型細胞貧血病(sickle-cell anemia): 血紅蛋白分子遺傳缺陷造成的一種疾病,病人的大部分紅細胞呈鐮刀狀。其特點是病人的血紅蛋白β—亞基N端的第六個氨基酸殘缺是纈氨酸(vol),而不是下正常的谷氨酸殘基(Ghe)。
第三章
1,酶(enzyme):生物催化劑,除少數RNA外幾乎都是蛋白質。酶不改變反應的平衡,只是
通過降低活化能加快反應的速度。
2,脫脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有機或無機輔助因子或輔基後的蛋白質部分。
3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亞基,輔基和其它輔助因子。
4,酶活力單位(U,active unit):酶活力單位的量度。1961年國際酶學會議規定:1個酶活力單位是指在特定條件(25oC,其它為最適條件)下,在1min內能轉化1μmol底物的酶量,或是轉化底物中1μmol的有關基團的酶量。
5,比活(specific activity):每分鍾每毫克酶蛋白在25oC下轉化的底物的微摩爾數。比活是酶純度的測量。
6,活化能(activation energy):將1mol反應底物中所有分子由其態轉化為過度態所需要的能量。
7,活性部位(active energy):酶中含有底物結合部位和參與催化底物轉化為產物的氨基酸殘基部分。活性部位通常位於蛋白質的結構域或亞基之間的裂隙或是蛋白質表面的凹陷部位,通常都是由在三維空間上靠得很進的一些氨基酸殘基組成。
8,酸-鹼催化(acid-base catalysis):質子轉移加速反應的催化作用。
9,共價催化(covalent catalysis):一個底物或底物的一部分與催化劑形成共價鍵,然後被轉移給第二個底物。許多酶催化的基團轉移反應都是通過共價方式進行的。
10,靠近效應(proximity effect):非酶促催化反應或酶促反應速度的增加是由於底物靠近活性部位,使得活性部位處反應劑有效濃度增大的結果,這將導致更頻繁地形成過度態。
11,初速度(initial velocity):酶促反應最初階段底物轉化為產物的速度,這一階段產物的濃度非常低,其逆反應可以忽略不計。
12,米氏方程(Michaelis-Mentent equation):表示一個酶促反應的起始速度(υ)與底物濃度([s])關系的速度方程:υ=υmax[s]/(Km+[s])
13,米氏常數(Michaelis constant):對於一個給定的反應,異至酶促反應的起始速度(υ0)達到最大反應速度(υmax)一半時的底物濃度。
14,催化常數(catalytic number)(Kcat):也稱為轉換數。是一個動力學常數,是在底物處於飽和狀態下一個酶(或一個酶活性部位)催化一個反應有多快的測量。催化常數等於最大反應速度除以總的酶濃度(υmax/[E]total)。或是每摩酶活性部位每秒鍾轉化為產物的底物的量(摩[爾])。
15,雙倒數作圖(double-reciprocal plot):那稱為Lineweaver_Burk作圖。一個酶促反應的速度的倒數(1/V)對底物度的倒數(1/LSF)的作圖。x和y軸上的截距分別代表米氏常數和最大反應速度的倒數。
16,競爭性抑製作用(competitive inhibition):通過增加底物濃度可以逆轉的一種酶抑制類型。競爭性抑制劑通常與正常的底物或配體競爭同一個蛋白質的結合部位。這種抑制使Km增大而
υmax不變。
17,非競爭性抑製作用(noncompetitive inhibition): 抑制劑不僅與游離酶結合,也可以與酶-底物復合物結合的一種酶促反應抑製作用。這種抑制使Km不變而υmax變小。
18,反競爭性抑製作用(uncompetitive inhibition): 抑制劑只與酶-底物復合物結合而不與游離的酶結合的一種酶促反應抑製作用。這種抑制使Km和υmax都變小但υmax/Km不變。
19,絲氨酸蛋白酶(serine protease): 活性部位含有在催化期間起親核作用的絲氨殘基的蛋白質。
20,酶原(zymogen):通過有限蛋白水解,能夠由無活性變成具有催化活性的酶前體。
21,調節酶(regulatory enzyme):位於一個或多個代謝途徑內的一個關鍵部位的酶,它的活性根據代謝的需要而增加或降低。
22,別構酶(allosteric enzyme):活性受結合在活性部位以外的部位的其它分子調節的酶。
23,別構調節劑(allosteric molator):結合在別構調節酶的調節部位調節該酶催化活性的生物分子,別構調節劑可以是激活劑,也可以是抑制劑。
24,齊變模式(concerted model):相同配體與寡聚蛋白協同結合的一種模式,按照最簡單的齊變模式,由於一個底物或別構調節劑的結合,蛋白質的構相在T(對底物親和性低的構象)和R(對底物親和性高的構象)之間變換。這一模式提出所有蛋白質的亞基都具有相同的構象,或是T構象,或是R構象。
25,序變模式(sequential model):相同配體與寡聚蛋白協同結合的另外一種模式。按照最簡單的序變模式,一個配體的結合會誘導它結合的亞基的三級結構的變化,並使相鄰亞基的構象發生很大的變化。按照序變模式,只有一個亞基對配體具有高的親和力。
26,同功酶(isoenzyme isozyme):催化同一化學反應而化學組成不同的一組酶。它們彼此在氨基酸序列,底物的親和性等方面都存在著差異。
27,別構調節酶(allosteric molator):那稱為別構效應物。結合在別構酶的調節部位,調節酶催化活性的生物分子。別構調節物可以是是激活劑,也可以是抑制劑。
第四章
1,維生素(vitamin):是一類動物本身不能合成,但對動物生長和健康又是必需的有機物,所以必需從食物中獲得。許多輔酶都是由維生素衍生的。
2,水溶性維生素(water-soluble vitamin):一類能溶於水的有機營養分子。其中包括在酶的催化中起著重要作用的B族維生素以及抗壞血酸(維生素C)等。
3,脂溶性維生素(lipid vitamin):由長的碳氫鏈或稠環組成的聚戊二烯化合物。脂溶性維生素包括A,D,E,和K,這類維生素能被動物貯存。
4,輔酶(conzyme):某些酶在發揮催化作用時所需的一類輔助因子,其成分中往往含有維生素。輔酶與酶結合鬆散,可以通過透析除去。
5,輔基(prosthetic group):是與酶蛋白質共價結合的金屬離子或一類有機化合物,用透析法不能除去。輔基在整個酶促反應過程中始終與酶的特定部位結合。
6,尼克醯胺腺嘌呤二核苷酸(NAD+)和尼克醯胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克醯胺的輔酶,在某些氧化還原中起著氫原子和電子載體的作用,常常作為脫氫酶的輔。
7,黃素單核苷酸(FMN)一種核黃素磷酸,是某些氧化還原反應的輔酶。
8,硫胺素焦磷酸(thiamine phosphate):是維生素B1的輔形式,參與轉醛基反應。
9,黃素腺嘌呤二核苷酸(FAD):是某些氧化還原反應的輔酶,含有核黃素。
10,磷酸吡哆醛(pyidoxal phosphate):是維生素B6(吡哆醇)的衍生物,是轉氨酶,脫羧酶和消旋酶的酶。
11,生物素(biotin):參與脫羧反應的一種酶的輔助因子。
12,輔酶A(coenzyme A):一種含有泛酸的輔酶,在某些酶促反應中作為醯基的載體。
13,類胡蘿卜素(carotenoid):由異戊二烯組成的脂溶性光合色素。
14,轉氨酶(transaminase):那稱為氨基轉移酶,在該酶的催化下,一個α-氨基酸的氨基可轉移給別一個α-酮酸。
第五章
1,醛糖(aldose):一類單糖,該單糖中氧化數最高的C原子(指定為C-1)是一個醛基。
2,酮糖(ketose):一類單糖,該單糖中氧化數最高的C原子(指定為C-2)是一個酮基。
3,異頭物(anomer):僅在氧化數最高的C原子(異頭碳)上具有不同構形的糖分子的兩種異構體。
4,異頭碳(anomer carbon):環化單糖的氧化數最高的C原子,異頭碳具有羰基的化學反應性。
5,變旋(mutarotation):吡喃糖,呋喃糖或糖苷伴隨它們的α-和β-異構形式的平衡而發生的比旋度變化。
6,單糖(monosaccharide):由3個或更多碳原子組成的具有經驗公式(CH2O)n的簡糖。
7,糖苷(dlycoside):單糖半縮醛羥基與別一個分子的羥基,胺基或巰基縮合形成的含糖衍生物。
8,糖苷鍵(glycosidic bond):一個糖半縮醛羥基與另一個分子(例如醇、糖、嘌呤或嘧啶)的羥基、胺基或巰基之間縮合形成的縮醛或縮酮鍵,常見的糖醛鍵有O—糖苷鍵和N—糖苷鍵。
9,寡糖(oligoccharide):由2~20個單糖殘基通過糖苷鍵連接形成的聚合物。
10,多糖(polysaccharide):20個以上的單糖通過糖苷鍵連接形成的聚合物。多糖鏈可以是線形的或帶有分支的。
11,還原糖(recing sugar):羰基碳(異頭碳)沒有參與形成糖苷鍵,因此可被氧化充當還原劑的糖。
12,澱粉(starch):一類多糖,是葡萄糖殘基的同聚物。有兩種形式的澱粉:一種是直鏈澱粉,是沒有分支的,只是通過α-(1→4)糖苷鍵的葡萄糖殘基的聚合物;另一類是支鏈澱粉,是含有分支的,α-(1→4)糖苷鍵連接的葡萄糖殘基的聚合物,支鏈在分支處通過α-(1→6)糖苷鍵與主鏈相連。
13,糖原(glycogen): 是含有分支的α-(1→4)糖苷鍵的葡萄糖殘基的同聚物,支鏈在分支點處通過α-(1→6)糖苷鍵與主鏈相連。
14,極限糊精(limit dexitrin):是指支鏈澱粉中帶有支鏈的核心部位,該部分經支鏈澱粉酶水解作用,糖原磷酸化酶或澱粉磷酸化酶作用後仍然存在。糊精的進一步降解需要α-(1→6)糖苷鍵的水解。
15,肽聚糖(peptidoglycan):N-乙醯葡萄糖胺和N-乙醯唾液酸交替連接的雜多糖與不同的肽交叉連接形成的大分子。肽聚糖是許多細菌細胞壁的主要成分。
16,糖蛋白(glycoprotein):含有共價連接的葡萄糖殘基的蛋白質。
17,蛋白聚糖(proteoglycan):由雜多糖與一個多肽連組成的雜化的在分子,多糖是分子的主要成分。
第六章
1,脂肪酸(fatty acid):是指一端含有一個羧基的長的脂肪族碳氫鏈。脂肪酸是最簡單的一種脂,它是許多更復雜的脂的成分。
2,飽和脂肪酸(saturated fatty acid):不含有—C=C—雙鍵的脂肪酸。
3,不飽和脂肪酸(unsaturated fatty acid):至少含有—C=C—雙鍵的脂肪酸。
4,必需脂肪酸(occential fatty acid):維持哺乳動物正常生長所必需的,而動物又不能合成的脂肪酸,Eg亞油酸,亞麻酸。
5,三脂醯苷油(triacylglycerol):那稱為甘油三酯。一種含有與甘油脂化的三個脂醯基的酯。脂肪和油是三脂醯甘油的混合物。
6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,腦磷脂。
7,鞘脂(sphingolipid):一類含有鞘氨醇骨架的兩性脂,一端連接著一個長連的脂肪酸,另一端為一個極性和醇。鞘脂包括鞘磷脂,腦磷脂以及神經節苷脂,一般存在於植物和動物細胞膜內,尤其是在中樞神經系統的組織內含量豐富。
8,鞘磷脂(sphingomyelin):一種由神經醯胺的C-1羥基上連接了磷酸毛里求膽鹼(或磷酸乙醯胺)構成的鞘脂。鞘磷脂存在於在多數哺乳動物動物細胞的質膜內,是髓鞘的主要成分。
9,卵磷脂(lecithin):即磷脂醯膽鹼(PC),是磷脂醯與膽鹼形成的復合物。
10,腦磷脂(cephalin):即磷脂醯乙醇胺(PE),是磷脂醯與乙醇胺形成的復合物。
11,脂質體(liposome):是由包圍水相空間的磷脂雙層形成的囊泡(小泡)。
12,生物膜(bioligical membrane):鑲嵌有蛋白質的脂雙層,起著畫分和分隔細胞和細胞器作用生物膜也是與許多能量轉化和細胞內通訊有關的重要部位。
13,內在膜蛋白(integral membrane protein):插入脂雙層的疏水核和完全跨越脂雙層的膜蛋白。
14,外周膜蛋白(peripheral membrane protein):通過與膜脂的極性頭部或內在的膜蛋白的離子相互作用和形成氫鍵與膜的內或外表面弱結合的膜蛋白。
15,流體鑲嵌模型(fluid mosaic model):針對生物膜的結構提出的一種模型。在這個模型中,生物膜被描述成鑲嵌有蛋白質的流體脂雙層,脂雙層在結構和功能上都表現出不對稱性。有的蛋白質「鑲「在脂雙層表面,有的則部分或全部嵌入其內部,有的則橫跨整個膜。另外脂和膜蛋白可以進行橫向擴散。
16,通透系數(permeability coefficient):是離子或小分子擴散過脂雙層膜能力的一種量度。通透系數大小與這些離子或分子在非極性溶液中的溶解度成比例。
17,通道蛋白(channel protein):是帶有中央水相通道的內在膜蛋白,它可以使大小適合的離子或分子從膜的任一方向穿過膜。
18,(膜)孔蛋白(pore protein):其含意與膜通道蛋白類似,只是該術語常用於細菌。
19,被動轉運(passive transport):那稱為易化擴散。是一種轉運方式,通過該方式溶質特異的結合於一個轉運蛋白上,然後被轉運過膜,但轉運是沿著濃度梯度下降方向進行的,所以被動轉達不需要能量的支持。
20,主動轉運(active transport):一種轉運方式,通過該方式溶質特異的結合於一個轉運蛋白上然後被轉運過膜,與被動轉運運輸方式相反,主動轉運是逆著濃度梯度下降方向進行的,所以主動轉運需要能量的驅動。在原發主動轉運過程中能源可以是光,ATP或電子傳遞;而第二級主動轉運是在離子濃度梯度下進行的。
21,協同運輸(contransport):兩種不同溶質的跨膜的耦聯轉運。可以通過一個轉運蛋白進行同一方向(同向轉運)或反方向(反向轉運)轉運。
22,胞吞(信用)(endocytosis):物質被質膜吞入並以膜衍生出的脂囊泡形成(物質在囊泡內)被帶入到細胞內的過程。
第七章
1,核苷(nucleoside):是嘌呤或嘧啶鹼通過共價鍵與戊糖連接組成的化合物。核糖與鹼基一般都是由糖的異頭碳與嘧啶的N-1或嘌呤的N-9之間形成的β-N-糖鍵連接。
2,核苷酸(uncleoside):核苷的戊糖成分中的羥基磷酸化形成的化合物。
3,cAMP(cycle AMP):3ˊ,5ˊ-環腺苷酸,是細胞內的第二信使,由於某部些激素或其它分子信號刺激激活腺苷酸環化酶催化ATP環化形成的。
4,磷酸二脂鍵(phosphodiester linkage):一種化學基團,指一分子磷酸與兩個醇(羥基)酯化形成的兩個酯鍵。該酯鍵成了兩個醇之間的橋梁。例如一個核苷的3ˊ羥基與別一個核苷的5ˊ羥基與同一分子磷酸酯化,就形成了一個磷酸二脂鍵。
5,脫氧核糖核酸(DNA):含有特殊脫氧核糖核苷酸序列的聚脫氧核苷酸,脫氧核苷酸之間是是通過3ˊ,5ˊ-磷酸二脂鍵連接的。DNA是遺傳信息的載體。
6,核糖核酸(RNA):通過3ˊ,5ˊ-磷酸二脂鍵連接形成的特殊核糖核苷酸序列的聚核糖核苷酸。
7,核糖體核糖核酸(Rrna,ribonucleic acid):作為組成成分的一類 RNA,rRNA是細胞內最 豐富的 RNA .
8,信使核糖核酸(mRNA,messenger ribonucleic acid):一類用作蛋白質合成模板的RNA .
9, 轉移核糖核酸(Trna,transfer ribonucleic acid):一類攜帶激活氨基酸,將它帶到蛋白質合成部位並將氨基酸整合到生長著的肽鏈上RNA。TRNA含有能識別模板mRNA上互補密碼的反密碼。
10,轉化(作用)(transformation):一個外源DNA 通過某種途徑導入一個宿主菌,引起該菌的遺傳特性改變的作用。
11,轉導(作用)(transction):藉助於病毒載體,遺傳信息從一個細胞轉移到另一個細胞。
12,鹼基對(base pair):通過鹼基之間氫鍵配對的核酸鏈中的兩個核苷酸,例如A與T或U , 以及G與C配對 。
13,夏格夫法則(Chargaff』s rules):所有DNA中腺嘌呤與胸腺嘧啶的摩爾含量相等(A=T),鳥嘌呤和胞嘧啶的摩爾含量相等(G=C),既嘌呤的總含量相等(A+G=T+C)。DNA的鹼基組成具有種的特異性,但沒有組織和器官的特異性。另外,生長和發育階段`營養狀態和環境的改變都不影響DNA的鹼基組成。
14,DNA的雙螺旋(DNAdouble helix):一種核酸的構象,在該構象中,兩條反向平行的多核甘酸鏈相互纏繞形成一個右手的雙螺旋結構。鹼基位於雙螺旋內側,磷酸與糖基在外側,通過磷酸二脂鍵相連,形成核酸的骨架。鹼基平面與假象的中心軸垂直,糖環平面則與軸平行,兩條鏈皆為右手螺旋。雙螺旋的直徑為2nm,鹼基堆積距離為0.34nm, 兩核甘酸之間的夾角是36゜,每對螺旋由10對鹼基組成,鹼基按A-T,G-C配對互補,彼此以氫鍵相聯系。維持DNA雙螺旋結構的穩定的力主要是鹼基堆積力。雙螺旋表面有兩條寬窄`深淺不一的一個大溝和一個小溝。
15.大溝(major groove)和小溝(minor groove):繞B-DNA雙螺旋表面上出現的螺旋槽(溝),寬的溝稱為大溝,窄溝稱為小溝。大溝,小溝都、是由於鹼基對堆積和糖-磷酸骨架扭轉造成的。
E. 有關生物農葯英文版的文獻
生物農葯 Biological pesticide ,biopesticide
The term biopesticide is often used for microbial biological control agents that are applied in a similar manner to chemical pesticides. Commonly these are microbial biological insecticides, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis (a control agent for grape powdery mildew). Bacillus subtilis are used to control plant pathogens. Weeds and rodents have also been controlled with microbial agents.
Biopesticides are certain types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals. For example, canola oil and baking soda have pesticidal applications and are considered biopesticides. At the end of 2001, there were approximately 195 registered biopesticide active ingredients and 780 procts. Biopesticides fall into three major classes:
Microbial pesticides consist of a microorganism (e.g., a bacterium, fungus, virus or protozoan) as the active ingredient. Microbial pesticides can control many different kinds of pests, although each separate active ingredient is relatively specific for its target pest[s]. For example, there are fungi that control certain weeds, and other fungi that kill specific insects.
The most widely used microbial pesticides are subspecies and strains of Bacillus thuringiensis, or Bt. Each strain of this bacterium proces a different mix of proteins, and specifically kills one or a few related species of insect larvae. While some Bt's control moth larvae found on plants, other Bt's are specific for larvae of flies and mosquitoes. The target insect species are determined by whether the particular Bt proces a protein that can bind to a larval gut receptor, thereby causing the insect larvae to starve.
Plant-Incorporated-Protectants (PIPs) are pesticidal substances that plants proce from genetic material that has been added to the plant. For example, scientists can take the gene for the Bt pesticidal protein, and introce the gene into the plant's own genetic material. Then the plant, instead of the Bt bacterium, manufactures the substance that destroys the pest. The protein and its genetic material, but not the plant itself, are regulated by EPA.
Biochemical pesticides are naturally occurring substances that control pests by non-toxic mechanisms. Conventional pesticides, by contrast, are generally synthetic materials that directly kill or inactivate the pest. Biochemical pesticides include substances, such as insect sex pheromones, that interfere with mating, as well as various scented plant extracts that attract insect pests to traps. Because it is sometimes difficult to determine whether a substance meets the criteria for classification as a biochemical pesticide, EPA has established a special committee to make such decisions.
What are the advantages of using biopesticides?
Biopesticides are usually inherently less toxic than conventional pesticides.
Biopesticides generally affect only the target pest and closely related organisms, in contrast to broad spectrum, conventional pesticides that may affect organisms as different as birds, insects, and mammals.
Biopesticides often are effective in very small quantities and often decompose quickly, thereby resulting in lower exposures and largely avoiding the pollution problems caused by conventional pesticides.
When used as a component of Integrated Pest Management (IPM) programs, biopesticides can greatly decrease the use of conventional pesticides, while crop yields remain high.
To use biopesticides effectively, however, users need to know a great deal about managing pests.
How does EPA encourage the development and use of biopesticides?
In 1994, the Biopesticides and Pollution Prevention Division was established in the Office of Pesticide Programs to facilitate the registration of biopesticides. This Division promotes the use of safer pesticides, including biopesticides, as components of IPM programs. The Division also coordinates the Pesticide Environmental Stewardship Program (PESP).
Since biopesticides tend to pose fewer risks than conventional pesticides, EPA generally requires much less data to register a biopesticide than to register a conventional pesticide. In fact, new biopesticides are often registered in less than a year, compared with an average of more than 3 years for conventional pesticides.
While biopesticides require less data and are registered in less time than conventional pesticides, EPA always concts rigorous reviews to ensure that pesticides will not have adverse effects on human health or the environment. For EPA to be sure that a pesticide is safe, the Agency requires that registrants submit a variety of data about the composition, toxicity, degradation, and other characteristics of the pesticide
----------------
In what is described as an important step toward controlling crop-destroying insects without chemical pesticides, scientists have successfully used genetic engineering to hasten the work of biological pest controls.
In two separate experiments, researchers say they removed toxin-procing genes from mites and scorpions and inserted them in viruses that kill insect pests. The toxins paralyzed the insects and prevented them from eating vegetation for much of the time it took the slowly working viruses to kill the pests. Ordinarily, the insects would go on eating crops until they died. But because they were immobilized, plant damage in one experiment was half what it would otherwise have been.
The United States and British experiments, which both involved the cabbage looper moth, were described in yesterday's issue of the British journal Nature.
Biological pesticides are an attractive alternative to expensive and environmentally dangerous chemical pesticides, but so far they have only secured about 1 percent of the worldwide pesticide market. The slowness of many biological controls, compared with chemical pesticides, is one reason. 'A Long Step'
The findings reported today "take the development of effective 'biopesticides' a long step further," two British experts say in a commentary in Nature. They are Michael E. Hochberg of the Center for Population at Imperial College and Jeffrey K. Waage of the International Institute of Biological Control, both in Ascot, England.
Chemical pesticides are generally lethal to a broad spectrum of insects, killing beneficial insects as well as pests. But the viruses that kill insect pests are limited to a number of species, or only one. They do not affect animals, including humans. The new technique makes it possible to proce an efficient, genetically engineered virus aimed at any single pest, said Dr. Lois K. Miller, an entomologist and geneticist at the University of Georgia, whose laboratory concted one experiment. She wrote one of the papers in Nature, along with Dr. Michael D. Tomalski.
The British experiment was concted by Dr. Robert D. Possee and a number of his colleagues at the Institute of Virology and Environmental Microbiology operated by the National Environment Research Council at Oxford, England.
Both groups said that the paralyzing toxins added to the viruses were harmless to mice, and by extension to all mammals, but Dr. Miller said that further test would be undertaken. Both groups also said that insects were unlikely to develop resistance to the genetically engineered viruses. "Those insects infected with the virus and that are exposed to the toxin die," said Dr. Miller. "So there is little chance of a resistance being passed on to the next generation."
Many insect species have developed resistance after being exposed for long periods to chemcial pesticides and also to plants into which toxic properties have been bred.
An extended period of testing and certification by university, instrial and government scientists will be necessary before the genetically altered viruses can be used commercially in the United States. "It will take three to five years to move this through the registration proceres," Dr. Miller said.
Both the American and British experiments involved the larvae of the cabbage looper moth, a pest that attacks a wide variety of plants including cabbage and cabbage relatives, including broccoli and cauliflower. To kill these larvae, both teams of scientists used the same agent, called the Autographa californica nuclear polyhedrosis virus. Paralyzing the Larvae
To paralyze the larvae while the virus was doing its work, the University of Georgia team selected a toxin proced by a tiny mite, Pyemotes tricici, that can immobilize insects 150,000 times the mite's size. The British team selected a toxin proced by the Algerian scorpion.
The American scientists found that the toxin from the mite reced the time necessary to bring the plant-eating insects under control by 40 percent. Control was defined as the death or paralysis of 50 percent of the insect population.
F. wxb是哪家公司的數字貨幣
英為財情的數字貨幣行情庫已經涵蓋超過2500種虛擬幣,搜索bstc,無結果,說明並不存在這樣一種流行的數字貨幣。
不過,美股市場中,有一支股票的股票代碼是bstc,即biospecifics生物
(bstc)
G. BSTC是數字貨幣嗎哪家公司發行的
BSTC是美國百仕通集團發行的虛擬數字貨幣,給有一個黑鑽幣我是百仕通集團發行的,BSBC我是百仕通集團的,百事通集團是07年在納斯達克上市公司,全球最大的資金管理公司
H. 求翻譯,生物大神來吧
最近的興趣復甦代謝手中-
tations轉化細胞系和其他迅速增殖
哺乳動物細胞導致更深
對分子司機後面的理解
矛盾的通量重新布線。然而,進一步推動
一般在糖酵解或glutaminolytic「鎖定」
表型,而是可以改變他們的新陳代謝
向增加OXPHOS或替代的使用
基質養分消耗,環境-
心理干擾,或基因
I. 誰知道生物工程和材料方面的切合點有那些
知道一些,是我所在的高校近期有類似的研發項目。
1, Biomaterial,這個方向是結合了材料和生物兩個學科的領域,細化說,這是一個結合了物理化學,生物和制葯四個方向的學科。比如仿生物器官的材料,用化學材料和生物材料合成製作假牙,或者是生物制劑葯品開發過程中使用化學物質導致易於和機體發生反應,還有就是生物分子表面反應的相互關系使用化學的方法和角度來進行詮釋。
2,Biopharmaceutics,生物制葯學也用到了大量的材料科學的內容。這個專業方向明確提出會使用material science,結合毒理學,制葯學等生物工程相關的學科。
大概列舉幾個現階段的研究方向(翻譯得不太好,見諒啦):
a,Specific targeting to the entero-hepatobiliary system based on ADME and clinical principles 基於ADME(指吸收,分散,代謝,排泄四個過程)和臨床理論的腸,膽系統特異性靶向研究
b,Novel oral formulations of poorly soluble compounds using principles from dietary lipid processing 基於食用行脂肪(吸收)過程的不易溶化合物研究(這里的oral formulation我也不知是特指什麼)
c,Novel approaches for drug targeting of anti-cancer drugs based on ADME and clinical principles 基於ADME(指吸收,分散,代謝,排泄四個過程)和臨床理論的抗癌葯物靶點研究(這個和樓主詢問的應該是相關性很強的。)
d,Develop new drug delivery principles where it exists a clinical need (such as sublingual delivery of fentanyl to cancer patients with incident (breakthrough) pain) 基於臨床需要的新葯研究
(這個也是和樓主詢問的應該是相關性很強的。)
J. 英語作文 生物技術的優點
The main features of the new biotechnology
Main features:
(A) to break a few thousand years can not be genetically distant hybridization of the law, breaking the barrier between species. Any one can introce a gene to give it new life forms and genetic characteristics, for example, a bacterial toxin genes into cotton, the pest-resistant cotton to obtain the performance; Another example would be a certain kind of virus genes into tobacco or vegetables, leaving the latter to obtain new varieties of plant virus resistance; and if the growth hormone gene into pigs may get fish or fish or fast-growing new breed pigs and so on. This is the transgenic plants or transgenic animals, which is breeding history of a great revolution.
(B) provides a direct means or artificial gene or protein synthesis, or the use of simple microbes to mass proction of useful proteins, important for human and animal disease prevention, treatment and diagnosis. You can even change the nature of protein to make it more in line with people's needs, which is protein engineering. In the past, a very small amount of protein in the body, difficult to extract, can now be mass proced using E. coli fermentation, resulting in the formation of new biological treatment, and pharmaceutical instry.
(C) provide a means of gene therapy in the treatment and prevention on a genetic level, for the treatment of difficult to treat genetic diseases, cancer and so on.
Emerging biotechnology instry benefits
New biotechnology for developing countries provides a useful means to develop their national economy, the advantages are: 1, low investment, high value, short, quick; 2, the use of natural renewable energy sources, bacteria can be infinitely blooms; 3, the new bio-genetically engineered varieties of bacteria are relative genetic stability, can be continuous, long-term use it to create wealth; 4, generally no environmental pollution.
Trend of development of biotechnology
Over the last decade the international development of biotechnology, summarized as the following significant trends and characteristics:
(A) rapid genetic manipulation techniques, continuous improvement, especially in gene transfer technology, gene amplification, gene cloning, gene modification technology, and through commercial channels, selling a full set of reagents specific technology, to promote. Currently, gene technology has been extended to the grassroots level, such as clinicians using gene amplification technology diagnostic difficult cases.
(B) the biological treatment by leaps and bounds. New drugs and vaccines have been about 20 new procts on the market, has generated huge economic and social benefits, the pharmaceutical instry will face this century update.
(C) genetically modified plants and animals have a major breakthrough. Insect-resistant, anti-virus vegetables and other crops, insect-resistant cotton, has entered the practical stage, the beginning of this century, we can promote socially acceptable insect-resistant, anti-virus crops. Cultivate salinity, drought-resistant crops, in this century will be realized. Introction of new bio-technological innovation throughout the agriculture, is estimated to be fully operational by 2030.
(D) of the human genome as a major international collaboration between scientific issues, the development of new drugs offer good prospects.
(E) expectations for gene therapy to make significant progress. Since 1990, treatment of one case of congenital immune deficiency has been only four years the object of gene therapy has been rapidly extended to the treatment of cancer, AIDS, hepatitis B, cardiovascular and other serious diseases. Estimated beginning of this century, cancer, AIDS and other serious diseases prevention and control is expected to achieve a breakthrough.
Emerging biotechnology applications in agriculture
Biotechnology is important for China's high agricultural techniques, including the development of high yielding, high quality, stress-resistant new varieties of plants and animals, nitrogen fixation, Livestock and other major diseases prevention and control. Currently, the emerging biotechnology applications in agriculture mainly in the areas of genetically modified plants and animals.
Transgenic plants such as tobacco mosaic virus resistance in tobacco, cotton bollworm resistance, insect-resistant vegetables, anti-rotten tomatoes.
Transgenic animals such as fast-growing fish, milk secretion of a large number of effective drugs in sheep or other animals.
Genetically engineered micro-organisms such as agriculture, transformation of symbiotic nitrogen fixation joint fixation or engineering bacteria to enhance nitrogen fixation, with toxic gene engineered bacteria used as pesticides.
Veterinary vaccines using genetically engineered recombinant D NA technologies and the development of veterinary vaccines for serious infectious disease prevention.
Engineering for the rapid propagation of bovine embryos cattle breeding, embryo division, variant development.
Emerging biotechnology applications in medicine
Biological treatment is the use of D NA recombinant technology or other new biotechnology disease prevention and treatment, based on current progress, the biological treatment should include broad restructuring and reorganization of D NA protein drugs drugs into two categories:
1, the recombinant protein drugs: treatment, including cytokines, anti-cytokines treatment, treatment of immune protection, guidance toxins, drugs based on gene transcription factors, monoclonal antibody therapeutic agents, vaccines, treatments and so on. 2, recombinant D NA drugs: drugs, including oligonucleotides, gene therapy and gene vaccines.
Biotechnology can also be used for process, energy and other instrial applications, including starch, amino acids, enzymes, antibiotics, polymers, methanol proction, control of environmental pollution, oil drilling and mining and so on. However, the current focus on medicine and agriculture, today's biotechnology applications in medicine accounted for more than 60% of biotechnology, has formed a new instrial biotechnology procts mainly in medicine.
China's 863 major biotechnology objectives and progress
Main strategic objectives are:
Developed hybrid rice yield than the existing 15% of hybrid rice, and large scale; developed with significant market value of the fast-growing fish; 10 to 15 species of high-tech biotech drugs and vaccines to market, the basic formation of our biological field high-tech instry, annual turnover of 1 billion yuan; strive to put 50% of the results of the application; the main aspects of biotechnology to the current international standards, and in hybrid rice, transgenic plants, hepatitis and cancer prevention and control of new drugs and vaccines in the formation of the country's characteristics, including some of the items in the international leading level; build a number of bio-tech research and development base; train a group of cross-century high-tech talent.
To this end, the establishment of three themes: First, high-quality, anti-animal and plant new varieties; second new drugs, vaccines and gene therapy; third protein engineering. Consists of five major projects and 12 thematic projects.
Achievements sum up, have the following main aspects:
Two-line hybrid rice research has made significant progress; genetically modified plants, animals, breakthrough progress; have been homozygous for insect-resistant cotton, trypsin inhibitor gene transfer of cotton also continue to differentiate in vitro germination, disease tobacco has been widely promoted has received a number of fast-growing transgenic common carp; recombinant microorganisms have been used for agricultural proction, increase yield, saving more than 2 kg nitrogen per acre; recombinant hepatitis B vaccine proction technology reached the international advanced level, there are other cholera three kinds of new vaccines into the pilot, several countries linked technology transfer issues; genetically engineered peptide drugs to achieve instrialization, recombinant interferon and interleukin-2 of the annual output of about 50 million yuan; hemophilia B gene therapy leading position in the international arena; basic research in biotechnology innovation results; our basic grasp of today's biological scientists, main areas of cutting-edge technology, driven by 863 and radiation, biological technology in China have a greater degree of popularity, China's large Hospital began to use P CR technology for disease diagnosis.
Challenges and Opportunities
Looking ahead, China's population growth and land shortage is a long-standing conflicts, and international rapid development of modern biotechnology is expected to bring the Green Revolution, is the hope to resolve this contradiction. China's development of biotechnology has many advantages, so we should: focus on clinical efficacy as soon as possible develop a number of clear, non-infringement of foreign patent procts; development group is currently abroad, as soon as possible in the clinical stage Ⅰ, Ⅱ trials, drug proction has not yet been license, with great prospect of the drug, the use of our clinical trials of favorable conditions, it is possible in the case of infringement of foreign patents, required to complete our clinical stage Ⅰ, Ⅱ trial, treatment of new indications, first to the market ; considering the development of a number of foreign patent expire early this century and has great application value in our pro