① arima模型python 怎麼看平穩性
時間序列分析(一) 如何判斷序列是否平穩
序列平穩不平穩,一般採用兩種方法:
第一種:看圖法
圖是指時序圖,例如(eviews畫滴):
分析:什麼樣的圖不平穩,先說下什麼是平穩,平穩就是圍繞著一個常數上下波動。
看看上面這個圖,很明顯的增長趨勢,不平穩。
第二種:自相關系數和偏相關系數
還以上面的序列為例:用eviews得到自相關和偏相關圖,Q統計量和伴隨概率。
分析:判斷平穩與否的話,用自相關圖和偏相關圖就可以了。
平穩的序列的自相關圖和偏相關圖不是拖尾就是截尾。截尾就是在某階之後,系數都為 0 ,怎麼理解呢,看上面偏相關的圖,當階數為 1 的時候,系數值還是很大, 0.914. 二階長的時候突然就變成了 0.050. 後面的值都很小,認為是趨於 0 ,這種狀況就是截尾。再就是拖尾,拖尾就是有一個衰減的趨勢,但是不都為 0 。
自相關圖既不是拖尾也不是截尾。以上的圖的自相關是一個三角對稱的形式,這種趨勢是單調趨勢的典型圖形。
下面是通過自相關的其他功能
如果自相關是拖尾,偏相關截尾,則用 AR 演算法
如果自相關截尾,偏相關拖尾,則用 MA 演算法
如果自相關和偏相關都是拖尾,則用 ARMA 演算法, ARIMA 是 ARMA 演算法的擴展版,用法類似 。
不平穩,怎麼辦?
答案是差分
還是上面那個序列,兩種方法都證明他是不靠譜的,不平穩的。確定不平穩後,依次進行1階、2階、3階...差分,直到平穩位置。先來個一階差分,上圖。
從圖上看,一階差分的效果不錯,看著是平穩的。
② ARIMA能預測股票嗎
不能,股票的價格是眾多大小投資者共同作用的結果。
③ ARIMA模型表達式怎麼分析的
用SPSS建立ARIMA預測模型實例詳細教程,ARIMA模型是隨機性時間序列分析中的一大類分析方法的綜合,可以進行...
④ 如何利用arima模型進行預測
一般自相關圖若為q階截尾則滑動系數為q.若偏自相關圖為p階截尾則自回歸系數為p.當然這樣判斷存在一定主觀性,還需結合AIC BIC值來判斷
⑤ ARIMA時間序列建模過程——原理及python實現
原文鏈接:http://tecdat.cn/?p=20742
時間序列被定義為一系列按時間順序索引的數據點。時間順序可以是每天,每月或每年。
以下是一個時間序列示例,該示例說明了從1949年到1960年每月航空公司的乘客數量。
最受歡迎的見解
1.在python中使用lstm和pytorch進行時間序列預測
2.python中利用長短期記憶模型lstm進行時間序列預測分析
3.使用r語言進行時間序列(arima,指數平滑)分析
4.r語言多元copula-garch-模型時間序列預測
5.r語言copulas和金融時間序列案例
6.使用r語言隨機波動模型sv處理時間序列中的隨機波動
7.r語言時間序列tar閾值自回歸模型
8.r語言k-shape時間序列聚類方法對股票價格時間序列聚類
9.python3用arima模型進行時間序列預測
⑥ 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。
⑦ 使用ARIMA模型時間序列分析,怎麼進行預測未來的趨勢
建立模型後帶入,forecast即可