『壹』 如何對個股進行分析!
首先是技術面,看這支股票的趨勢及空間
然後看它的基礎面,看這家上市公司是做什麼的,它的產品被不被人看好,以往的業績怎麼樣,和未來是否被看好
第三要看它的消息面,看看短期有沒有什麼利好,利空之類的消息,國家政策有沒有什麼對股市的利的
最後可能要看看有沒有內部的准確消息,消息不能全們,尤其是小道消息,除非你有朋友正在用大量獎金做這支股票,這樣你可以跟著發點小財,但如果不是,千萬不要盲目地進入。
技術看軟體就行了,信息軟體里也有,不過有一些不是准確的,也不是及時的,要想獲得第一手的資料不是一個人兩個人就能辦到的,需要一個團體,如果只是單獨的散戶那麼學好技術,短線操作,也能給你帶來豐厚的利益,消息方面可以從證券公司手裡得到。
我要說的就是這些了,希望你早日成為股市中的佼佼者!~~
『貳』 如何用MATLAB對股票數據做聚類分析
直接調kmeans函數。
k = 3;%類別數
idx = kmeans(X, k);%idx就是每個樣本點的標號。
『叄』 聚類分析的主要步驟
聚類分析的主要步驟
聚類分析的主要步驟
1.數據預處理,2.為衡量數據點間的相似度定義一個距離函數,3.聚類或分組,4.評估輸出。
數據預處理包括選擇數量,類型和特徵的標度,它依靠特徵選擇和特徵抽取,特徵選擇選擇重要的特徵,特徵抽取把輸入的特徵轉化為一個新的顯著特徵,它們經常被用來獲取一個合適的特徵集來為避免「維數災」進行聚類,數據預處理還包括將孤立點移出數據,孤立點是不依附於一般數據行為或模型的數據,因此孤立點經常會導致有偏差的聚類結果,因此為了得到正確的聚類,我們必須將它們剔除。
既然相類似性是定義一個類的基礎,那麼不同數據之間在同一個特徵空間相似度的衡量對於聚類步驟是很重要的,由於特徵類型和特徵標度的多樣性,距離度量必須謹慎,它經常依賴於應用,例如,通常通過定義在特徵空間的距離度量來評估不同對象的相異性,很多距離度都應用在一些不同的領域,一個簡單的距離度量,如Euclidean距離,經常被用作反映不同數據間的相異性,一些有關相似性的度量,例如PMC和SMC,能夠被用來特徵化不同數據的概念相似性,在圖像聚類上,子圖圖像的誤差更正能夠被用來衡量兩個圖形的相似性。
將數據對象分到不同的類中是一個很重要的步驟,數據基於不同的方法被分到不同的類中,劃分方法和層次方法是聚類分析的兩個主要方法,劃分方法一般從初始劃分和最優化一個聚類標准開始。CrispClustering,它的每一個數據都屬於單獨的類;FuzzyClustering,它的每個數據可能在任何一個類中,CrispClustering和FuzzyClusterin是劃分方法的兩個主要技術,劃分方法聚類是基於某個標准產生一個嵌套的劃分系列,它可以度量不同類之間的相似性或一個類的可分離性用來合並和分裂類,其他的聚類方法還包括基於密度的聚類,基於模型的聚類,基於網格的聚類。
評估聚類結果的質量是另一個重要的階段,聚類是一個無管理的程序,也沒有客觀的標准來評價聚類結果,它是通過一個類有效索引來評價,一般來說,幾何性質,包括類間的分離和類內部的耦合,一般都用來評價聚類結果的質量,類有效索引在決定類的數目時經常扮演了一個重要角色,類有效索引的最佳值被期望從真實的類數目中獲取,一個通常的決定類數目的方法是選擇一個特定的類有效索引的最佳值,這個索引能否真實的得出類的數目是判斷該索引是否有效的標准,很多已經存在的標准對於相互分離的類數據集合都能得出很好的結果,但是對於復雜的數據集,卻通常行不通,例如,對於交疊類的集合。
『肆』 如何對用戶進行聚類分析
需要搜集用戶的哪些特徵?
聚類分析變數選擇的原則是:在哪些變數組合的前提,使得類別內部的差異盡可能的小,即同質性高,類別間的差異盡可能的大,即同質性低,並且變數之間不能存在高度相關。
常用的用戶特徵變數有:
①
人口學變數:如年齡、性別、婚姻、教育程度、職業、收入等。通過人口學變數進行分類,了解每類人口的需求有何差異。
②
用戶目標:如用戶為什麼使用這個產品?為什麼選擇線上購買?了解不同使用目的的用戶的各自特徵,從而查看各類目標用戶的需求。
③
用戶使用場景:用戶在什麼時候,什麼情況下使用這個產品?了解用戶在各類場景下的偏好/行為差異。
④
用戶行為數據:如使用頻率,使用時長,客單價等。劃分用戶活躍等級,用戶價值等級等。
⑤
態度傾向量表:如消費偏好,價值觀等,看不同價值觀、不同生活方式的群體在消費取向或行為上的差異。
需要多少樣本量?
沒有限制,通常情況下與實際應用有關,如果非要加一個理論的限制,通常認為,樣本的個數要大於聚類個數的平方。
①如果需要聚類的數據量較少(<100),那麼三種方法(層次聚類法,K-均值聚類法,兩步聚類法)都可以考慮使用。優先考慮層次聚類法,因為層次聚類法產生的樹狀圖更加直觀形象,易於解釋,並且,層次聚類法提供方法、距離計算方式、標准化方式的豐富程度也是其他兩種方法所無法比擬的。
②如果需要聚類的數據量較大(>1000),應該考慮選擇快速聚類別法或者兩步聚類法進行。
③如果數據量在100~1000之間,理論上現在的計算條件是可能滿足任何聚類方法的要求的,但是結果的展示會比較困難,例如不可能再去直接觀察樹狀圖了。
應用定量方法還是定性方法?
聚類分析是一種定量分析方法,但對聚類分析結果的解釋還需要結合定性資料討論。
1.聚類分析的定義與用途
聚類分析(Cluster Analysis)是一種探索性的數據分析方法,根據指標/變數的數據結構特徵,對數據進行分類,使得類別內部的差異盡可能的小,即同質性高,類別間的差異盡可能的大,即同質性低。
2.聚類分析的方法
①層次聚類法(Hierarchical),也叫系統聚類法。既可處理分類變數,也可處理連續變數,但不能同時處理兩種變數類型,不需要指定類別數。聚類結果間存在著嵌套,或者說層次的關系。
②K-均值聚類法(K-Means Cluster),也叫快速聚類法。針對連續變數,也可處理有序分類變數,運算很快,但需要指定類別數。K-均值聚類法不會自動對數據進行標准化處理,需要先自己手動進行標准化分析。
③兩步聚類法(Two-Step Cluster):可以同時處理分類變數和連續變數,能自動識別最佳的類別數,結果比較穩定。如果只對連續變數進行聚類,描述記錄之間的距離性時可以使用歐氏(Euclidean)距離,也可以使用對數似然值(Log-likelihood),如果使用前者,則該方法和傳統的聚類方法並無太大區別;但是若進行聚類的還有離散變數,那麼就只能使用對數似然值來表述記錄間的差異性。當聚類指標為有序類別變數時,Two-Step Cluster出來的分類結果沒有K-means cluster的明晰,這是因為K-means演算法假定聚類指標變數為連續變數。
3.聚類分析的步驟
①確定研究目的:研究問題關注點有哪些、是否有先驗分類數…
②問卷編制:態度語句李克特項目、有序類別…
③確定分析變數:問卷變數的類型,連續or分類,有序類別or無序類別、是否納入後台數據,變數間相關性低…
④聚類分析:聚類分析方法選擇、數據標准化方法、聚類類別數確定…
⑤結果檢驗:類別間差異分析、是否符合常理…
⑥聚類結果解釋:類別的命名、類別間的差異、結合定性資料解釋…
『伍』 如何對一隻股票進行分析
首先從行業分析入手。分析任何一個公司的時候,都要了解這個行業的景氣度。目前市場上可以炒作的行業有三種,第一種新興行業,比如人工智慧、5G等。第二種周期行業,比如鋼鐵、有色、MDI等。第三種為國家扶持,比如農村振興,扶貧等。
行業分析完以後,再來看看公司分析。這邊是基於公司年報,半年報,季報,機構調研報告等,其中最主要的是上市公司年報,半年報,季報。這裡面最主要的就是三大財務報表,也就是資產負債表,利潤表,和現金流量表。
股票基本分析還包括文初提到的重要數據信息,總股本是指包括新股發行前的股份和新發行的股份的數量的總和,總值是指某特定時間內總股本數乘以當時股價得出的股票總價值。流通股指上市公司股份中,可以在交易所流通的股份數量。流值指某特定時間內當時可交易的流通股股數乘以當時股價得出的流通股票總價值。
『陸』 如何運用聚類分析法
聚類分析法是理想的多變數統計技術,主要有分層聚類法和迭代聚類法。聚類通過把目標數據放入少數相對同源的組或「類」(cluster)里。分析表達數據,(1)通過一系列的檢測將待測的一組基因的變異標准化,然後成對比較線性協方差。(2)通過把用最緊密關聯的譜來放基因進行樣本聚類,例如用簡單的層級聚類(hierarchical clustering)方法。這種聚類亦可擴展到每個實驗樣本,利用一組基因總的線性相關進行聚類。(3)多維等級分析(multidimensional scaling analysis,MDS)是一種在二維Euclidean 「距離」中顯示實驗樣本相關的大約程度。(4)K-means方法聚類,通過重復再分配類成員來使「類」內分散度最小化的方法。
聚類方法有兩個顯著的局限:首先,要聚類結果要明確就需分離度很好(well-separated)的數據。幾乎所有現存的演算法都是從互相區別的不重疊的類數據中產生同樣的聚類。但是,如果類是擴散且互相滲透,那麼每種演算法的的結果將有點不同。結果,每種演算法界定的邊界不清,每種聚類演算法得到各自的最適結果,每個數據部分將產生單一的信息。為解釋因不同演算法使同樣數據產生不同結果,必須注意判斷不同的方式。對遺傳學家來說,正確解釋來自任一演算法的聚類內容的實際結果是困難的(特別是邊界)。最終,將需要經驗可信度通過序列比較來指導聚類解釋。
第二個局限由線性相關產生。上述的所有聚類方法分析的僅是簡單的一對一的關系。因為只是成對的線性比較,大大減少發現表達類型關系的計算量,但忽視了生物系統多因素和非線性的特點。
從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。
從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。就數據挖掘功能而言,聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。
聚類分析還可以作為其他數據挖掘任務(如分類、關聯規則)的預處理步驟。
數據挖掘領域主要研究面向大型資料庫、數據倉庫的高效實用的聚類分析演算法。
聚類分析是數據挖掘中的一個很活躍的研究領域,並提出了許多聚類演算法。
這些演算法可以被分為劃分方法、層次方法、基於密度方法、基於網格方法和
基於模型方法。
1 劃分方法(PAM:PArtitioning method) 首先創建k個劃分,k為要創建的劃分個數;然後利用一個循環
定位技術通過將對象從一個劃分移到另一個劃分來幫助改善劃分質量。典型的劃分方法包括:
k-means,k-medoids,CLARA(Clustering LARge Application),
CLARANS(Clustering Large Application based upon RANdomized Search).
FCM
2 層次方法(hierarchical method) 創建一個層次以分解給定的數據集。該方法可以分為自上
而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合
並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:
第一個是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用樹的結構對對象集進行劃分;然後再利
用其它聚類方法對這些聚類進行優化。
第二個是CURE(Clustering Using REprisentatives) 方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定
量(向聚類中心)進行收縮。
第三個是ROCK方法,它利用聚類間的連接進行聚類合並。
最後一個CHEMALOEN,它則是在層次聚類時構造動態模型。
3 基於密度方法,根據密度完成對象的聚類。它根據對象周圍的密度(如
DBSCAN)不斷增長聚類。典型的基於密度方法包括:
DBSCAN(Densit-based Spatial Clustering of Application with Noise):該演算法通過不斷生長足夠高密
度區域來進行聚類;它能從含有雜訊的空間資料庫中發現任意形狀的聚類。此方法將一個聚類定義
為一組「密度連接」的點集。
OPTICS(Ordering Points To Identify the Clustering Structure):並不明確產生一
個聚類,而是為自動交互的聚類分析計算出一個增強聚類順序。。
4 基於網格方法,首先將對象空間劃分為有限個單元以構成網格結構;然後利
用網格結構完成聚類。
STING(STatistical INformation Grid) 就是一個利用網格單元保存的統計信息進行基
於網格聚類的方法。
CLIQUE(Clustering In QUEst)和Wave-Cluster 則是一個將基於網格與基於密度相結合的方
法。
5 基於模型方法,它假設每個聚類的模型並發現適合相應模型的數據。典型的
基於模型方法包括:
統計方法COBWEB:是一個常用的且簡單的增量式概念聚類方法。它的輸入對象是采
用符號量(屬性-值)對來加以描述的。採用分類樹的形式來創建
一個層次聚類。
CLASSIT是COBWEB的另一個版本.。它可以對連續取值屬性進行增量式聚
類。它為每個結點中的每個屬性保存相應的連續正態分布(均值與方差);並利
用一個改進的分類能力描述方法,即不象COBWEB那樣計算離散屬性(取值)
和而是對連續屬性求積分。但是CLASSIT方法也存在與COBWEB類似的問題。
因此它們都不適合對大資料庫進行聚類處理.
『柒』 如何對股票進行技術分析
任何一種技術分析研究的都是一種概率,任何人都不可能完全准確的預測股市。如果股市能夠被人准確預測的話,那麼多空分歧也就不存在了,股市也就不存在交易行為了,此時股市本身也就消亡了。大家在用炒股軟體的時候,也不要一味的寄希望與此,所有的指標策略都是總結以往的經驗而得的那麼,在運用這些指標公示技術分析時,還是要結合自己的判斷。
股票技術分析是從K線純技術角度分析,基本面分析是從企業研發,技術,設備,人才到市場佔有率的分析。
1、股票技術分析是以預測市場價格變化的未來趨勢為目的,通過分析歷史圖表對市場價格的運動進行分析的一種方法。其目的是預測短期內股價漲跌的趨勢,它是證券投資市場中非常普遍應用的一種分析方法。技術分析是指以市場行為為研究對象,以判斷市場趨勢並跟隨趨勢的周期性變化來進行股票及一切金融衍生物交易決策的方法的總和。
2、基本面分析又稱基本分析,是以證券的內在價值為依據,著重於對影響證券價格及其走勢的各項因素的分析,以此決定投資購買何種證券及何時購買。一般所講的基本面分析是指對宏觀經濟面、公司主營業務所處行業、公司業務同行業競爭水平和公司內部管理水平包括對管理層的考察這諸多方面的分析,數據在這里充當了最大的分析依據,但往往不能以數據來做最終的投資決策,如果數據可以解決問題,那計算機早就代替人腦完成基本面分析,事實上除了數據還要包括許許多多無法以數據來衡量的東西。
『捌』 對一隻股票進行基本分析,怎麼分析從哪些角度進行分析
公司所在的板塊前景發展如何,公司是龍頭,近年持續賺錢,營業收入增長率,凈利潤增長率,以上必須考慮的。
『玖』 如何對用戶進行聚類分析
你先要分開用戶的類型,然後歸類,進行分析人群的特點,望採納