① 聚類分析的意義是什麼
1、與多元分析的其他方法相比,聚類分析是很粗糙的,理論尚不完善,但由於它成功地應用於心理、經濟、社會、管理、醫學、地質、生態、地震、氣象、考古、企業決策等,因此成了多元分析的重要方法,統計包中都有豐富的軟體,對數據進行聚類處理。
2、聚類分析除了獨立的統計功能外,還有一個輔助功能,就是和其他統計方法配合,對數據進行預處理。
例如,當總體不清楚時,可對原始數據進行聚類,根據聚類後相似的數據,各自建立回歸分析,分析的效果會更好。同時如果聚類不是根據個案,而是對變數先進行聚類,聚類的結果,可以在每一類推出一個最有代表性的變數,從而減少了進入回歸方程的變數數。
3、聚類分析是研究按一定特徵,對研究對象進行分類的多元統計方法,它並不關心特徵及變數間的因果關系。分類的結果,應使類別間個體差異大,而同類的個體差異相對要小。
(1)聚類分析在股票擴展閱讀:
聚類效果的檢驗:
一、聚類分析後得到的每個類別是否可以進行有效的命名,每個類別的特徵情況是否符合現實意義,如果研究者可以結合專業知識對每個聚類類別進行命名,即說明聚類效果良好,如果聚類類別無法進行命名,則需要考慮重新進行聚類分析。
二、使用判別分析方法進行判斷,將SPSS生成的聚類類別變數作為因變數(Y),而將聚類變數作為自變數(X)進行判別分析,判別分析具體分析聚類變數與類別之間投影關系情況,如果研究人員對聚類分析效果非常在乎,可以使用判別分析進行分析。
三、聚類分析方法的詳細過程說明,描述清楚聚類分析的科學使用過程,科學的聚類分析方法使用即是良好結果的前提保障。
是、聚類分析後每個類別樣本數量是否均勻,如果聚類結果顯示為三個類別,有一個類別樣本量非常少,比如低於30,此時很可能說明聚類效果較差。針對聚類效果的判斷,研究者主要是結合專業知識判斷,即聚類類別是否可以進行有效命名。
② 上證綜指與地域板塊的聚類分析如何分析
炒股扣扣群117986153
剛建的新群,希望大家都進來交流。沒事的時候也可以在群里聊聊天,吹吹牛。
③ 如何運用聚類分析法
聚類分析法是理想的多變數統計技術,主要有分層聚類法和迭代聚類法。聚類通過把目標數據放入少數相對同源的組或「類」(cluster)里。分析表達數據,(1)通過一系列的檢測將待測的一組基因的變異標准化,然後成對比較線性協方差。(2)通過把用最緊密關聯的譜來放基因進行樣本聚類,例如用簡單的層級聚類(hierarchical clustering)方法。這種聚類亦可擴展到每個實驗樣本,利用一組基因總的線性相關進行聚類。(3)多維等級分析(multidimensional scaling analysis,MDS)是一種在二維Euclidean 「距離」中顯示實驗樣本相關的大約程度。(4)K-means方法聚類,通過重復再分配類成員來使「類」內分散度最小化的方法。
聚類方法有兩個顯著的局限:首先,要聚類結果要明確就需分離度很好(well-separated)的數據。幾乎所有現存的演算法都是從互相區別的不重疊的類數據中產生同樣的聚類。但是,如果類是擴散且互相滲透,那麼每種演算法的的結果將有點不同。結果,每種演算法界定的邊界不清,每種聚類演算法得到各自的最適結果,每個數據部分將產生單一的信息。為解釋因不同演算法使同樣數據產生不同結果,必須注意判斷不同的方式。對遺傳學家來說,正確解釋來自任一演算法的聚類內容的實際結果是困難的(特別是邊界)。最終,將需要經驗可信度通過序列比較來指導聚類解釋。
第二個局限由線性相關產生。上述的所有聚類方法分析的僅是簡單的一對一的關系。因為只是成對的線性比較,大大減少發現表達類型關系的計算量,但忽視了生物系統多因素和非線性的特點。
從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。
從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。就數據挖掘功能而言,聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。
聚類分析還可以作為其他數據挖掘任務(如分類、關聯規則)的預處理步驟。
數據挖掘領域主要研究面向大型資料庫、數據倉庫的高效實用的聚類分析演算法。
聚類分析是數據挖掘中的一個很活躍的研究領域,並提出了許多聚類演算法。
這些演算法可以被分為劃分方法、層次方法、基於密度方法、基於網格方法和
基於模型方法。
1 劃分方法(PAM:PArtitioning method) 首先創建k個劃分,k為要創建的劃分個數;然後利用一個循環
定位技術通過將對象從一個劃分移到另一個劃分來幫助改善劃分質量。典型的劃分方法包括:
k-means,k-medoids,CLARA(Clustering LARge Application),
CLARANS(Clustering Large Application based upon RANdomized Search).
FCM
2 層次方法(hierarchical method) 創建一個層次以分解給定的數據集。該方法可以分為自上
而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合
並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:
第一個是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用樹的結構對對象集進行劃分;然後再利
用其它聚類方法對這些聚類進行優化。
第二個是CURE(Clustering Using REprisentatives) 方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定
量(向聚類中心)進行收縮。
第三個是ROCK方法,它利用聚類間的連接進行聚類合並。
最後一個CHEMALOEN,它則是在層次聚類時構造動態模型。
3 基於密度方法,根據密度完成對象的聚類。它根據對象周圍的密度(如
DBSCAN)不斷增長聚類。典型的基於密度方法包括:
DBSCAN(Densit-based Spatial Clustering of Application with Noise):該演算法通過不斷生長足夠高密
度區域來進行聚類;它能從含有雜訊的空間資料庫中發現任意形狀的聚類。此方法將一個聚類定義
為一組「密度連接」的點集。
OPTICS(Ordering Points To Identify the Clustering Structure):並不明確產生一
個聚類,而是為自動交互的聚類分析計算出一個增強聚類順序。。
4 基於網格方法,首先將對象空間劃分為有限個單元以構成網格結構;然後利
用網格結構完成聚類。
STING(STatistical INformation Grid) 就是一個利用網格單元保存的統計信息進行基
於網格聚類的方法。
CLIQUE(Clustering In QUEst)和Wave-Cluster 則是一個將基於網格與基於密度相結合的方
法。
5 基於模型方法,它假設每個聚類的模型並發現適合相應模型的數據。典型的
基於模型方法包括:
統計方法COBWEB:是一個常用的且簡單的增量式概念聚類方法。它的輸入對象是采
用符號量(屬性-值)對來加以描述的。採用分類樹的形式來創建
一個層次聚類。
CLASSIT是COBWEB的另一個版本.。它可以對連續取值屬性進行增量式聚
類。它為每個結點中的每個屬性保存相應的連續正態分布(均值與方差);並利
用一個改進的分類能力描述方法,即不象COBWEB那樣計算離散屬性(取值)
和而是對連續屬性求積分。但是CLASSIT方法也存在與COBWEB類似的問題。
因此它們都不適合對大資料庫進行聚類處理.
④ 如何用MATLAB對股票數據做聚類分析
直接調kmeans函數。
k = 3;%類別數
idx = kmeans(X, k);%idx就是每個樣本點的標號。
⑤ 一直搞不懂,什麼情況下做聚類分析,求大神指點,最好有些簡單的數據說明
聚類分析 是在你需要對所有樣本進行分類時使用
比如市場調查了我的所有客戶基本信息 消費行為特徵等,然後根據這些數據 我要對我的客戶進行一下分類,找出我的客戶主要有哪幾類 每類有什麼共同特點 等
之後就可以根據每類的特殊性 做不同的活動
⑥ 聚類分析在股票板塊中的應用 急需此題論文!!
請先看看下面這教程,看能否找到你要的答案,不明再問我。。
www.fjmu.e.cn
⑦ 聚類分析方法有什麼好處
聚類分析:將個體(樣品)或者對象(變數)按相似程度(距離遠近)劃分類別,使得同一類中的元素之間的相似性比其他類的元素的相似性更強。目的在於使類間元素的同質性最大化和類與類間元素的異質性最大化。其主要依據是聚到同一個數據集中的樣本應該彼此相似,而屬於不同組的樣本應該足夠不相似。
常用聚類方法:系統聚類法,K-均值法,模糊聚類法,有序樣品的聚類,分解法,加入法。
注意事項:
1. 系統聚類法可對變數或者記錄進行分類,K-均值法只能對記錄進行分類;
2. K-均值法要求分析人員事先知道樣品分為多少類;
3. 對變數的多元正態性,方差齊性等要求較高。
應用領域:細分市場,消費行為劃分,設計抽樣方案等
優點:聚類分析模型的優點就是直觀,結論形式簡明。
缺點:在樣本量較大時,要獲得聚類結論有一定困難。由於相似系數是根據被試的反映來建立反映被試間內在聯系的指標,而實踐中有時盡管從被試反映所得出的數據中發現他們之間有緊密的關系,但事物之間卻無任何內在聯系,此時,如果根據距離或相似系數得出聚類分析的結果,顯然是不適當的,但是,聚類分析模型本身卻無法識別這類錯誤。
⑧ 股票概念的聚類用什麼模型
所有股票分析軟體都有這個功能,輸入想看概念板塊,如煤炭輸入MT小寫就可以看到了