1. 什麼是波動率指數
1987的全球股災後,為穩定股市與保護投資者,紐約證券交易所(NYSE)於1990年引進了斷路器機制(Circuit-breakers),當股價發生異常變動時,暫時停止交易,試圖降低市場的波動性來恢復投資者的信心。但斷路器機制引進不久,對於如何衡量市場波動性市場產生了許多新的認識,漸漸產生了動態顯示市場波動性的需求。因此,在NYSE採用斷路器來解決市場過度波動問題不久,芝加哥期權交易所從1993年開始編制市場波動率指數(Market Volatility Index,VIX),以衡量市場的波動率。
CBOE 在1973年4月開始股票期權交易後,就一直有通過期權價格來構造波動率指數的設想,以反映市場對於的未來波動程度的預期。其間有學者陸續提出各種計算方法,Whaley(1993)[1] 提出了編制市場波動率指數作為衡量未來股票市場價格波動程度的方法。同年,CBOE開始編制VIX 指數,選擇S&P100 指數期權的隱含波動率為編制基礎,同時計算買權與賣權的隱含波動率,以考慮交易者使用買權或賣權的偏好。
VIX表達了期權投資者對未來股票市場波動性的預期,當指數越高時,顯示投資者預期未來股價指數的波動性越劇烈;當VIX指數越低時,代表投資者認為未來的股價波動將趨於緩和。由於該指數可反應投資者對未來股價波動的預期,並且可以觀察期權參與者的心理表現,也被稱為「投資者情緒指標」(The investor fear gauge )。經過十多年的發展和完善,VIX指數逐漸得到市場認同,CBOE於2001年推出以NASDAQ 100指數為標的的波動性指標 (NASDAQ Volatility Index ,VXN); CBOE2003年以S&P500指數為標的計算VIX指數,使指數更貼近市場實際。2004年推出了第一個波動性期貨(Volatility Index Futures)VIX Futures, 2004年推出第二個將波動性商品化的期貨,即方差期貨 (Variance Futures),標的為三個月期的S&P500指數的現實方差(Realized Variance)。2006年,VIX指數的期權開始在芝加哥期權交易所開始交易
計算波動率指數(VIX)需要的核心數據是隱含波動率,隱含波動率由期權市場上最新的交易價格算出,可以反映市場投資者對於未來行情的預期。其概念類似於債券的到期收益率(Yield To Maturity):隨著市場價格變動,利用適當的利率將債券的本金和票息貼現,當債券現值等於市場價格時的貼現率即為債券的到期收益率,也就是債券的隱含報酬率。在計算過程中利用債券評價模型,通過使用市場價格可反推出到期收益率,這一收益率即為隱含的到期收益率。
2. eviews怎麼預測未來四天某隻股票的價格那
你要先建立模型,然後才談預測的事情
另外,如果你是為了炒股,那還是省省吧,預測不準確的
3. ARIMA能預測股票嗎
不能,股票的價格是眾多大小投資者共同作用的結果。
4. arima模型python 怎麼看平穩性
時間序列分析(一) 如何判斷序列是否平穩
序列平穩不平穩,一般採用兩種方法:
第一種:看圖法
圖是指時序圖,例如(eviews畫滴):
分析:什麼樣的圖不平穩,先說下什麼是平穩,平穩就是圍繞著一個常數上下波動。
看看上面這個圖,很明顯的增長趨勢,不平穩。
第二種:自相關系數和偏相關系數
還以上面的序列為例:用eviews得到自相關和偏相關圖,Q統計量和伴隨概率。
分析:判斷平穩與否的話,用自相關圖和偏相關圖就可以了。
平穩的序列的自相關圖和偏相關圖不是拖尾就是截尾。截尾就是在某階之後,系數都為 0 ,怎麼理解呢,看上面偏相關的圖,當階數為 1 的時候,系數值還是很大, 0.914. 二階長的時候突然就變成了 0.050. 後面的值都很小,認為是趨於 0 ,這種狀況就是截尾。再就是拖尾,拖尾就是有一個衰減的趨勢,但是不都為 0 。
自相關圖既不是拖尾也不是截尾。以上的圖的自相關是一個三角對稱的形式,這種趨勢是單調趨勢的典型圖形。
下面是通過自相關的其他功能
如果自相關是拖尾,偏相關截尾,則用 AR 演算法
如果自相關截尾,偏相關拖尾,則用 MA 演算法
如果自相關和偏相關都是拖尾,則用 ARMA 演算法, ARIMA 是 ARMA 演算法的擴展版,用法類似 。
不平穩,怎麼辦?
答案是差分
還是上面那個序列,兩種方法都證明他是不靠譜的,不平穩的。確定不平穩後,依次進行1階、2階、3階...差分,直到平穩位置。先來個一階差分,上圖。
從圖上看,一階差分的效果不錯,看著是平穩的。
5. ARIMA時間序列建模過程——原理及python實現
原文鏈接:http://tecdat.cn/?p=20742
時間序列被定義為一系列按時間順序索引的數據點。時間順序可以是每天,每月或每年。
以下是一個時間序列示例,該示例說明了從1949年到1960年每月航空公司的乘客數量。
最受歡迎的見解
1.在python中使用lstm和pytorch進行時間序列預測
2.python中利用長短期記憶模型lstm進行時間序列預測分析
3.使用r語言進行時間序列(arima,指數平滑)分析
4.r語言多元copula-garch-模型時間序列預測
5.r語言copulas和金融時間序列案例
6.使用r語言隨機波動模型sv處理時間序列中的隨機波動
7.r語言時間序列tar閾值自回歸模型
8.r語言k-shape時間序列聚類方法對股票價格時間序列聚類
9.python3用arima模型進行時間序列預測
6. spss DW偏小 除了用ARIMA模型 還能用什麼呢因為樣本是4年內的多支股票 而且有的股票只有1~2年的數據
1.5偏小了
每個人的情況都不一樣的啊
我經常幫別人做類似的數據分析的
7. 怎樣用spss做股票新成交量
主要根據分析目的來吧,比如建立arima,然後預測之類的
8. 怎麼從arma的結果圖看各個變數的系數
利用以上得出的模型.ARMA模型的檢驗。最終選取ARIMA(1。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,模型擬合基本符合。
5.股價預測,首先直接對數據平穩檢驗,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取,即可認為殘差中沒有包含太多信息。在後期,再觀察其平穩性,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近。
由於時間序列模型往往需要大樣本。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,1,所以這里我選取長江證券從09/03。選取ARIMA(1,且Q值基本通過檢驗,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗;20到09,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差;06/19日開盤價,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點。可以先生成原始數據的一階差分數據dls,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,沒通過檢驗,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的,q)。經多輪比較不同ARMA(p,q)模型,並定階。
2,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型.數據平穩性分析。
(1)先觀測一階差分數據dls的AC和PAC圖。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,殘差不明顯存在相關,1。
可以看出差分後,被廣泛應用到經濟領域預測中,MA或者是ARMA模型,可以得出相對應AIC 和 SC的值,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值,其他日期的誤差皆在接受范圍內。
綜上所述。ARMA模型是一種最常見的重要時間序列模型
9. 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。
10. eviews中運用某個股票的價格擬合ARIMA模型,如何處理其中的缺失值
eviews擬合ARIMA模型問題均可+名中我QQ來給以解決。