當前位置:首頁 » 行情解析 » 使用蒙特卡洛模擬分析股票價格
擴展閱讀
中國旺旺股票漲幅圖 2025-09-18 00:48:09
好幾分鍾沒有交易的股票 2025-09-17 18:31:39

使用蒙特卡洛模擬分析股票價格

發布時間: 2022-06-01 07:59:29

㈠ 蒙特卡洛標准預測方法-蒙特卡洛模擬方法-Excel學習網

此圖說明了確定性的預測……根據我的經驗,這是標准方法。它本質上是在問:“如果我們的銷售量為100,銷售商品的成本為35%,營業費用為45,稅金為25%,我們的利潤將是多少?”
(單擊此處以獲取此工作簿的副本,其中包含本頁上描述的所有蒙特卡洛表和報告。這將使您能夠集中精力於如何使蒙特卡洛方法適應您自己的公司。)
與大多數此類預測不同,該預測在F列中明確說明了其假設。
當然,在現實生活中,每個假設都可能得到單獨的分析和預測的支持。
再次,這種方法的問題在於我們知道預測將是不正確的,因為大多數預測都是不正確的,並且我們無法表達利潤預測可能合理的錯誤程度。
因此,讓我們修復此預測...

㈡ 為什麼美式期權不能直接用蒙特卡洛模擬

以執行價 K=98 的美式看跌期權為例,蒙特卡洛模擬的結果是一條確定的價格路徑,比如下面這樣:
T | t=0 | t=1 | t=2 | t=3
路徑1 | 100 | 97 | 103 | 105
如果你對照著這條路徑,就應該在t=1時行權。但這樣就相當於,你在t=1時,就已經知道未來的價格走勢了。
這種預知未來,在現實中是不被允許的。你可以回歸數據,得到映射關系(或者說 規律),但不可以翻劇本、直接用未來的結果。所以考慮引入最小二乘蒙特卡洛模擬,E(Y|X)=g(X),其中Y是繼續持有、不提前行權、所帶來的未來收益貼現值(即內在價值),而X是標的物在t時刻的價格。
作為加深理解,你考慮下歐式期權,由於不依賴路徑,不會提前行權,只關注到期日 T 這一個時間點上的標的物價格,所以可以直接用蒙特卡洛模擬。

㈢ 下面的問題用蒙特卡洛模擬如何實現啊,想了解個基本過程

蒙特卡洛的基本原理就是通過計算機的計算能力進行大量實驗。實驗樣本到達一定數量後,能得出接近結果的數值解。這個題目可以通過計算直接得出結果接近於正態分布,但可以用excel簡單的說明下蒙特卡洛方法。
用excel的步驟基本如下:

1、第一列拉出各周期編號1至1000。(假設都是從第一行開始)
2、第二列作為隨機種子,B1輸入=rand()
3、第三列為根據既定價格及概率p值(回答里寫的p值,但輸入時應該是具體數值)判斷購買與否,C1輸入=if(B1<p,1,0)
4、第四列、五列展示周期開始、結束時剩餘貨物,即D1為50,E1輸入=max(D1-C1,0),而後D2輸入=E1,E2輸入=max(D1-C1,0)。
5、每一列對應下拉(四、五列從第二行開始下拉)。
按這個步驟的話,就得出一個既定價格下,剩餘產品數量隨時間變化的表。
至於最後的利潤也是可以根據這個算的。
不過以上的過程是基於對每個周期買的概率進行1000次蒙特卡洛模擬。
如果模擬的是這1000次周期的結果,那就直接用一列到位,對多列的結果進行統計。
第1列仍然編號,第2列直接整合上述234步,表示該周期初始貨物存貨,第1行50,第二行B2輸入=IF(RAND()<p,MAX(B1-1,0),B1),這里用的p仍然是數值的表示,比如說概率是0.7,實際應該輸入=IF(RAND()<0.7,MAX(B1-1,0),B1)
下拉,出現到1000步的初始貨物存貨,根據要求實際上是1000步後的結果,可以拉到1001行。這就用單列表示了整個貨物變化過程,如果想要更多1000步的不同結果,把整個b列右拉即有更多結果。

㈣ 用蒙特卡羅模擬法研究股市有效嗎

技術面的股票分析有MACD、威廉指標,等等太多了,沒有一種指標是真正能夠完美預測股價漲跌的,消息面,市場供需等多方面考慮才是。

㈤ 蒙特卡洛模擬法

蒙特卡洛模擬技術,是用隨機抽樣的方法抽取一組滿足輸入變數的概率分布特徵的數值,輸入這組變數計算項目評價指標,通過多次抽樣計算可獲得評價指標的概率分布及累計概率分布、期望值、方差、標准差,計算項目可行或不可行的概率,從而估計項目投資所承擔的風險。

蒙特卡洛模擬的步驟如下:

第一步,通過敏感性分析,確定風險變數。

第二步,構造風險變數的概率分布模型。

第三步,為各輸入風險變數抽取隨機數。

第四步,將抽得的隨機數轉化為各輸入變數的抽樣值。

第五步,將抽樣值組成一組項目評價基礎數據。

第六步,根據基礎數據計算出評價指標值。

第七步,整理模擬結果所得評價指標的期望值、方差、標准差和它的概率分布及累計概率,繪制累計概率圖,計算項目可行或不可行的概率。

蒙特卡洛模擬程序如圖7-26所示。

圖7-26 蒙特卡洛模擬程序圖

【實訓Ⅷ】某項目建設投資為1億元,流動資金1000 萬元,項目兩年建成,第三年投產,當年達產。不含增值稅年銷售收入為5000萬元,經營成本2000萬元,附加稅及營業外支出每年為50萬元,項目計算期12 a。項目要求達到的項目財務內部收益率為15%,求內部收益率低於15%的概率。

由於蒙特卡洛模擬的計算量非常大,必須藉助計算機來進行。本案例通過手工計算,模擬20次,主要是演示模擬過程。

(1)確定風險變數。通過敏感性分析,得知建設投資、產品銷售收入、經營成本為主要風險變數。流動資金需要量與經營成本線性相關,不作為獨立的輸入變數。

(2)構造概率分布模型。建設投資變化概率服從三角形分布,其悲觀值為1.3億元、最大可能值為1億元、樂觀值為9000萬元,如圖7-27所示。年銷售收入服從期望值為5000萬元、σ=300萬元的正態分布。年經營成本服從期望值為2000萬元、σ=100 萬元的正態分布。

圖7-27 投資三角形分布圖

建設投資變化的三角形分布的累計概率,見表7-16及圖7-27所示。

表7-16 投資額三角形分布累計概率表

(3)對投資、銷售收入、經營成本分別抽取隨機數,隨機數可以由計算機產生,或從隨機數表中任意確定起始數後,順序抽取。本例從隨機數表(表7-20)中抽取隨機數。假定模擬次數定為k=20,從隨機數表中任意從不同地方抽取三個20 個一組的隨機數,見表7-17。

表7-17 輸入變數隨機抽樣取值

(4)將抽得的隨機數轉化為各隨機變數的抽樣值。

這里以第1組模擬隨機變數產生做出說明。

1)服從三角形分布的隨機變數產生方法。

根據隨機數在累計概率表(表7-16)或累計概率圖(圖7-28)中查取。投資的第1個隨機數為48867萬元,查找累計概率0.48 867所對應的投資額,從表7-16中查得投資額在10300與10600之間,通過線性插值可得

第1個投資抽樣值=10300+300×(48867-39250)/(52000-39250)=10526萬元

2)服從正態分布的隨機變數產生方法。

從標准正態分布表(表7-21)中查找累計概率與隨機數相等的數值。例如銷售收入第1個隨機數06242,查標准正態分布表得銷售收入的隨機離差在-1.53與-1.54之間,經線性插值得-1.5348。

圖7-28 投資的累計概率分布圖

第1個銷售收入抽樣值=5000-1.5348×300≈4540萬元。

同樣,經營成本第一個隨機數66 903相應的隨機變數離差為0.4328,第一個經營成本的抽樣值=2000+100×0.4328=2043萬元。

3)服從離散型分布的隨機變數的抽樣方法。

本例中沒有離散型隨機變數。另舉例如下,據專家調查獲得的某種產品售價的概率分布見表7-18。

表7-18 某種產品售價的概率分布

根據上表繪制累計概率如圖7-29所示。

若抽取的隨機數為43252,從累計概率圖縱坐標上找到累計概率為0.43252,劃一水平線與累計概率折線相交的交點的橫坐標值125元,即是售價的抽樣值。

(5)投資、銷售收入、經營成本各20個抽樣值組成20組項目評價基礎數據。

(6)根據20組項目評價基礎數據,計算出20 個計算項目評價指標值,即項目財務內部收益率。

(7)模擬結果達到預定次數後,整理模擬結果按內部收益率從小到大排列並計算累計概率,見表7-19所示。

從累計概率表可知內部收益率低於15%的概率為15%,內部收益率高於15%的概率為85%。

圖7-29 售價累計概率曲線

表7-19 蒙特卡洛模擬法累積概率計算表

①每次模擬結果的概率=1/模擬次數。

㈥ 什麼是蒙特卡洛分析

蒙特卡羅分析法(統計模擬法),是一種採用隨機抽樣統計來估算結果的計算方法,可用於估算圓周率,由約翰·馮·諾伊曼提出。由於計算結果的精確度很大程度上取決於抽取樣本的數量,一般需要大量的樣本數據,因此在沒有計算機的時代並沒有受到重視。

利用蒙特卡羅分析法可用於估算圓周率,如圖,在邊長為 2 的正方形內作一個半徑為 1 的圓,正方形的面積等於 2×2=4,圓的面積等於 π×1×1=π,由此可得出,正方形的面積與圓形的面積的比值為 4:π。

現在讓我們用電腦或輪盤生成若干組均勻分布於 0-2 之間的隨機數,作為某一點的坐標散布於正方形內,那麼落在正方形內的點數 N 與落在圓形內的點數 K 的比值接近於正方形的面積與圓的面積的比值,即,N:K ≈ 4:π,因此,π ≈ 4K/N 。

用此方法求圓周率,需要大量的均勻分布的隨機數才能獲得比較准確的數值,這也是蒙特卡羅分析法的不足之處。

(6)使用蒙特卡洛模擬分析股票價格擴展閱讀:

使用蒙特·卡羅方法進行分子模擬計算是按照以下步驟進行的:

1. 使用隨機數發生器產生一個隨機的分子構型。

2. 對此分子構型的其中粒子坐標做無規則的改變,產生一個新的分子構型。

3. 計算新的分子構型的能量。

4. 比較新的分子構型於改變前的分子構型的能量變化,判斷是否接受該構型。

若新的分子構型能量低於原分子構型的能量,則接受新的構型,使用這個構型重復再做下一次迭代。 若新的分子構型能量高於原分子構型的能量,則計算玻爾茲曼因子,並產生一個隨機數。

若這個隨機數大於所計算出的玻爾茲曼因子,則放棄這個構型,重新計算。 若這個隨機數小於所計算出的玻爾茲曼因子,則接受這個構型,使用這個構型重復再做下一次迭代。

5. 如此進行迭代計算,直至最後搜索出低於所給能量條件的分子構型結束。

項目管理中蒙特·卡羅模擬方法的一般步驟是:

1.對每一項活動,輸入最小、最大和最可能估計數據,並為其選擇一種合適的先驗分布模型;

2.計算機根據上述輸入,利用給定的某種規則,快速實施充分大量的隨機抽樣

3.對隨機抽樣的數據進行必要的數學計算,求出結果

4.對求出的結果進行統計學處理,求出最小值、最大值以及數學期望值和單位標准偏差

5.根據求出的統計學處理數據,讓計算機自動生成概率分布曲線和累積概率曲線(通常是基於正態分布的概率累積S曲線)

6.依據累積概率曲線進行項目風險分析。

㈦ 在投資理財領域蒙特卡羅方法是如何運用的

在個人理財計劃領域,你可以模擬自己未來收入的不確定性、保險金的不確定性、理財產品收益的不確定性,分析不同情況下你的預算是怎樣的,然後進行理財規劃。
在公司金融領域,由於投資項目的現金流有不確定性,可以在現金流不確定的部分用蒙特卡洛模擬然後計算NPV;
在投資組合管理領域,可以蒙特卡洛模擬不同的影響因子的變化然後觀測它們的變化以及協同變化對投資組合內標的資產的價值變化的影響;

㈧ 怎麼用 Excel 做蒙特卡洛模擬

Excel 做蒙特卡洛模擬的具體操作步驟如下:

1、打開Excel表格,填寫三個活動時間估算的樂觀值,最可能值和悲觀值。

㈨ 對歷史股票價格做蒙特卡洛模擬

你先用5年前的數據模擬一下現在股票的價格,看準不準再說吧

㈩ 什麼是蒙特卡洛模擬( Monte Carlo simulation)

蒙特卡洛模擬又稱為隨機抽樣或統計試驗方法,屬於計算數學的一個分支,它是在上世紀四十年代中期為了適應當時原子能事業的發展而發展起來的。傳統的經驗方法由於不能逼近真實的物理過程,很難得到滿意的結果,而蒙特卡羅方法由於能夠真實地模擬實際物理過程,故解決問題與實際非常符合,可以得到很圓滿的結果。

蒙特卡洛隨機模擬法的原理是當問題或對象本身具有概率特徵時,可以用計算機模擬的方法產生抽樣結果,根據抽樣計算統計量或者參數的值;隨著模擬次數的增多,可以通過對各次統計量或參數的估計值求平均的方法得到穩定結論。

蒙特卡洛隨機模擬法 - 實施步驟抽樣計算統計量或者參數的值;隨著模擬次數的增多,可以通過對各次統計量或參數的估計值求平均的方法得到穩定結論。

(10)使用蒙特卡洛模擬分析股票價格擴展閱讀

基本原理思想

當所要求解的問題是某種事件出現的概率,或者是某個隨機變數的期望值時,它們可以通過某種「試驗」的方法,得到這種事件出現的頻率,或者這個隨機變數的平均值,並用它們作為問題的解。這就是蒙特卡羅方法的基本思想。

蒙特卡羅方法通過抓住事物運動的幾何數量和幾何特徵,利用數學方法來加以模擬,即進行一種數字模擬實驗。它是以一個概率模型為基礎,按照這個模型所描繪的過程,通過模擬實驗的結果,作為問題的近似解。可以把蒙特卡羅解題歸結為三個主要步驟:構造或描述概率過程;實現從已知概率分布抽樣;建立各種估計量。