① 主成分分析和因子分析有什麼區別
主成分分析和因子分析,不少人初次看到覺得非常相似。特別是spss中並沒有專門處理主成分分析的模塊,只是在因子分析過程中使用了主成分方法,導致有些人雲里霧里,將其混淆。其實二者不管從原理還是在使用上,均有較大差異。
>>>>原理不同
主成分分析(Principal components analysis,PCA)基本原理:利用降維(線性變換)的思想,在損失很少信息的前提下把多個指標轉化為幾個不相關的綜合指標(主成分),即每個主成分都是原始變數的線性組合,且各個主成分之間互不相關,使得主成分比原始變數具有某些更優越的性能(主成分必須保留原始變數90%以上的信息),從而達到簡化系統結構,抓住問題實質的目的。
因子分析(Factor Analysis,FA)基本原理:利用降維的思想,由研究原始變數相關矩陣內部的依賴關系出發,把一些具有錯綜復雜關系的變數表示成少數的公共因子和僅對某一個變數有作用的特殊因子線性組合而成。就是要從數據中提取對變數起解釋作用的少數公共因子(因子分析是主成分的推廣,相對於主成分分析,更傾向於描述原始變數之間的相關關系)
>>>>線性表示方向不同
主成分分析中則是把主成分表示成各變數的線性組合;
因子分析是把變數表示成各公因子的線性組合。
>>>>假設條件不同
主成分分析:不需要有假設(assumptions);
因子分析:需要一些假設。因子分析的假設包括:各個共同因子之間不相關,特殊因子(specificfactor)之間也不相關,共同因子和特殊因子之間也不相關。
② 主成分分析(PCA)和因子分析的異同點
計算公式和原理稍有不同
③ 因子分析和主成分分析有什麼區別啊
主成分分析和因子分析都是信息濃縮的方法,即將多個分析項信息濃縮成幾個概括性指標。
因子分析在主成分基礎上,多出一項旋轉功能,該旋轉目的即在於命名,更容易解釋因子的含義。如果研究關注於指標與分析項的對應關繫上,或是希望將得到的指標進行命名,SPSSAU建議使用因子分析。
主成分分析目的在於信息濃縮(但不太關注主成分與分析項對應關系),權重計算,以及綜合得分計算。如希望進行排名比較,計算綜合競爭力,可使用主成分分析。
SPSSAU可直接使用這兩種方法,支持自動保存因子得分及綜合得分,不需要手動計算。
④ 主成分分析法和因子分析法哪個用起來簡單
兩個方法基本相同,只是因子分析是在主成分基礎上,多出一步旋轉步驟,為了讓提取的成分更容易命名。兩種方法都可以在網頁版spssau中使用,配合智能文字建議和幫助手冊可以能快理解。
如果說研究目的完全在於信息濃縮,並且找出因子與分析項對應關系,建議用因子分析。主成分分析更多用於權重計算,以及綜合得分計算。
因子分析-SPSSAU
主成分分析-SPSSAU
⑤ 因子分析法如何確定主成分及各個指標的權重
(1)首先將數據標准化,這是考慮到不同數據間的量綱不一致,因而必須要無量綱化。
(2)對標准化後的數據進行因子分析(主成分方法),使用方差最大化旋轉。
(3)寫出主因子得分和每個主因子的方程貢獻率。 Fj =β1j*X1 +β2j*X2 +β3j*X3 + ……+ βnj*Xn ; Fj 為主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 為各個指標,β1j、β2j、β3j、……、βnj為各指標在主成分Fj 中的系數得分,用ej表示Fj的方程貢獻率。
(4)求出指標權重。 ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指標Xi的權重。
(5)股票pca因子分析擴展閱讀
產品特點
1、操作簡便
界面非常友好,除了數據錄入及部分命令程序等少數輸入工作需要鍵盤鍵入外,大多數操作可通過滑鼠拖曳、點擊「菜單」、「按鈕」和「對話框」來完成。
2、編程方便
具有第四代語言的特點,告訴系統要做什麼,無需告訴怎樣做。只要了解統計分析的原理,無需通曉統計方法的各種演算法,即可得到需要的統計分析結果。
對於常見的統計方法,SPSS的命令語句、子命令及選擇項的選擇絕大部分由「對話框」的操作完成。因此,用戶無需花大量時間記憶大量的命令、過程、選擇項。
3、功能強大
具有完整的數據輸入、編輯、統計分析、報表、圖形製作等功能。自帶11種類型136個函數。SPSS提供了從簡單的統計描述到復雜的多因素統計分析方法,比如數據的探索性分析、統計描述、列聯表分析、二維相關、秩相關、偏相關、方差分析、非參數檢驗、多元回歸、生存分析、協方差分析、判別分析、因子分析、聚類分析、非線性回歸、Logistic回歸等。
⑥ spss因子分析在證券市場個股分析中的應用實例
spss因子分析用於證券市場個股分析中,因為因子分析法是從研究變數內部相關的依賴關系出發,把一些具有錯綜復雜關系的變數歸結為少數幾個綜合因子的一種多變數統計分析方法。它的基本思想是將觀測變數進行分類,將相關性較高,即聯系比較緊密的分在同一類中,而不同類變數之間的相關性則較低,那麼每一類變數實際上就代表了一個基本結構,即公共因子。對於所研究的問題就是試圖用最少個數的不可測的所謂公共因子的線性函數與特殊因子之和來描述原來觀測的每一分量。
康美葯業投資分析
一、上市公司基本面情況:
600518康美葯業,最新財務主要指標(08-09-30)每股收益(元)0.2390,每股凈資產(元)3.5470,凈資產收益率(%) 6.74,總股本(億股)7.6440 ,實際流通A股(億股)7.6440,每股資本公積1.843,主營收入(萬元)130369.89,同比增 40.04% ,每股未分利潤0.606 ,凈利潤(萬元)18264.62,同比增 83.04%;
二、該股票的投資亮點:
1.2007年公司完成了阿莫西林分散片、利巴韋林片等多個再注冊產品的研究開發和上報工作,部分仿製葯品取得了《葯物臨床試驗批件》;同時公司積極開發中葯系列產品,完成了"代用茶"、"植物飲料"的備案號注冊以及西洋參膠囊/飲料科技開發立項工作;"紅景天"、"毒熱平"兩個中葯新葯品種已基本完成臨床前研究工作。
2.2008年,隨著國家衛生事業改革進一步深化,新農合、城鎮職工基本醫療保險、城鎮非從業居民基本醫療保險的進一步推廣,整個醫葯市場容量將增大。人們在醫療尤其是在葯品上的消費量和消費金額將迅速上升,這將對醫葯行業快速發展帶來有利的影響。
3. 2007年公司中葯飲片二期擴產項目順利建成並試產運營,該項目是公司在傳統中醫葯領域推廣應用新技術,實現中葯飲片規模化、標准化和產業化生產的一個重大成果。項目的投產緩解了產能緊張壓力,保障了市場供給,進一步穩固了公司在國內中葯飲片生產龍頭企業的地位。
4.公司通過增資擴股募集資金投資中葯物流配送中心項目,該項目是發揮公司中葯產業的生產經營優勢,整合當地中葯材專業市場資源,為延伸公司產業鏈條而實施的一個重點項目。
三、專業投資機構意見:
公司主營業務中葯飲片繼續拉動公司業績高速增長,2008 年三季度凈利潤增長83%,公司將全面布局全國性中葯飲片產業鏈,行業整頓期利用並購穩健擴張,公司正在創建中葯飲片行業的高質量標准體系,將發展為現代國內中葯飲片龍頭,預計公司未來三年復合增長率為40%,2008-2010 年EPS 為0.35,0.48,和0.80給予"增持"的投資評級。
四、綜合分析判斷結論:
從以上的信息可見康美葯業作為國家中葯制葯的龍頭企業,其股票是具有投資價值的,所以該股票後市看好,完全是可以長期投資的。
⑦ pca主成分分析第一主成分怎麼知道什麼成分
成分分析和因子分析有十大區別,在損失很少信息的前提下把多個指標轉化為幾個不相關的綜合指標(主成分),且各個主成分之間互不相關,使得主成: 1.原理不同 主成分分析基本原理:利用降維(線性變換)的思想,即每個主成分都是原始變數的線性組合
⑧ pca 因子載荷的值 大於多少 具有顯著性貢獻 0.707
這個不能說此次分析就是失敗的,應該說是你的變數或者說是問卷設計有問題
當然也可以不一定參照必須要大於0.5,但是常規的都是這樣參照的
這個因子載荷低有可能是問卷變數設計問題,有可能是數據採集質量有問題
如果是第一個問題的話 你可以先進行下問卷題目調整,比如刪減部分題目再嘗試,當然不是隨意刪減的,而是根據項目分析的相關指標來進行。
如果是數據質量問題 你可以嘗試著刪除部分變數再試一下
如果兩種方法都不行了,只能說明你的變數設計完全有問題或者數據完全不行 只能重做