1. Python 獲取股價的代碼怎麼寫
網頁上的嗎
還是某個伺服器上的
2. 有沒有會用Python編寫一個簡單的建模股票價格的小程序能夠對股票數據進行簡單預測即可!求助!
雖然懂python 但是不懂股票,
採用random()可以么,哈哈
3. 怎麼用python計算股票
作為一個python新手,在學習中遇到很多問題,要善於運用各種方法。今天,在學習中,碰到了如何通過收盤價計算股票的漲跌幅。
第一種:
讀取數據並建立函數:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置
t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)
plt.show()
f(t)
第二種:
利用pandas裡面的方法:
import pandas as pd
a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets
第三種:
close=a['close']
rets=close/close.shift(1)-1
print rets
總結:python是一種非常好的編程語言,一般而言,我們可以運用構建相關函數來實現自己的思想,但是,眾所周知,python中裡面的有很多科學計算包,裡面有很多方法可以快速解決計算的需要,如上面提到的pandas中的pct_change()。因此在平時的使用中應當學會尋找更好的方法,提高運算速度。
4. python 怎麼實現股價xo圖
c = [-10,-5,0,5,3,10,15,-20,25] # 返回最小值 >>> n=c.index(min(c)) >>> n 7 >>> c[7] -20 # 返回最大值 print c.index(max(c))
5. python用什麼方法或者庫可以拿到全部股票代碼
首先你需要知道哪個網站上有所有股票代碼,然後分析這個網站股票代碼的存放方式,再利用python寫一個爬蟲去爬取所有的股票代碼
6. 怎樣用 Python 寫一個股票自動交易的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
7. 怎樣用 Python 寫一個股票自動交易的程序
概率炒股法:
下面方法買漲不買跌,同時避免被套,缺點,手續費比較高,但完全可以吃完整個牛市,熊市不會被套。
用python獲取股票價格,如tushare,如果發現股票當天漲幅在大盤之上(2點30到2點50判斷),買入持有一天,下跌當天就別買,你可以用概率論方法,根據資金同時持有5支,10支或20支,這樣不怕停盤影響,理論上可以跑贏大盤。好處:避免人為沖動,缺點手續費高
還有一種是操作etf,如大盤50etf,etf300,中小板etf,創業板etf,當天2.30分判斷那個etf上漲就買入那支,買入漲幅最大的,不上漲什麼都不買,持有一天,第二天上午判斷一下,如果下跌超過2%賣掉。好處:不會踩地雷,缺點:漲隨大盤,我比較推薦這個方法,外圍的風險比較小。
具體的python程序我有,比上面復雜,有止贏止損位,資金管理,監視管理,我用在實盤當中,自動化下單也已解決。
我覺得程序的成敗不在一日之功,在於長期穩定賺錢,如運行十年,過多的數據分析也無意義,因為預測未來永遠是一個概率問題,不是百分之百確定的,如果你的程序能在長時間多次數上戰勝市場,你的程序就能趨向大數定理。
否則一時的回撤會讓你停止程序自動執行,而無法趨向大數定理中的穩定概率。
如果有一個程序能百分之99確定,那麼基本上肯定是分析了內幕交易數據,和徐x一樣,每次重倉一支股,這種手法應該是得到了內幕,也就不需要什麼程序來交易了。
巴菲特的交易模式實質上也是內幕交易的一種,因為他靠的是外在分析,實地考查,估計這是尋找內幕的手段,現在做大了,這種效果就不靈了,收益也下降了,美國經濟也下滑了,所以巴菲特的未來是必定是暗淡的,因為內幕交易的池子有限,資金量大了不好操作。
想想如果巴菲特生在蘇聯,印度,日本等等其他國家,他可能在街頭要飯,美國二戰後經濟環境加傾向內幕造就了他,而不是炒股技術有多神。所以巴菲特不屑於程序化交易。
巴菲特及不少美國式的股神實際上是倖存者偏差造成的,你想想蘇聯的股神在那裡?為什麼一個都沒有?(「沉默的數據」、「死人不會說話」)
我覺得未來真正能成股神必定是程序,不是人,因為一個好的程序策略可以用一輩子,實現長期穩定增長,當然前提是社會經濟環境穩定,不會出現類似蘇聯的動亂,也不會出現日本式的惡性通脹(對貨幣m2有點擔心)。
太多的股票讓股民每天沉浸在選股的游戲中,選股造就了券商的行情軟體,實際上很多數據都是沒有用的,所有的關鍵是按操作方法永遠執行下去才能趨向穩定概率,否則今天換一種明天換一種方法,今天按kdj,明天按macd,後天按boll,大後天按ddx,大大後天按自編指標,多條件選股,最後錢都交手續費或止損不及時被套牢了。這時券商收傭金的目的也就達到了,每年券商收的傭金比股市分紅要高。不管行情如何,只要多請幾個股評員,總有方向說對的,玩個概率游戲讓大家頻繁交易,券商的收入只會增不會降。所以千萬別信股評,玩的是概率游戲,如同預測硬幣的正反,請十個股評師必定有個能預測三次正確的神股評。你信這個神股評,後面可能是三次都不準,呵呵。所以券商和行情軟體總會在收盤或午休時彈出各種消息或評價,說實在的這種東西沒有一分錢的價值。可能早就寫好了上漲的說法是模塊a,下跌的說法是模板b,平市的說法是模板c,只是填上當天數據即可,都是八股文,都是馬後炮,一樣的事件上午說成是上漲理由,下午說成是下跌理由。
程序的策略經過測試後的關鍵在於穩定執行,長期穩定執行,長期長期穩定穩定執行執行,重要的事說三遍。
人性無法戰勝的弱點是執行力,小學生都懂的天天向上,每日進步,世間有幾人能做到?而穩定幾十年執行更是難上加難,如同背英語單詞一樣,理論上一天背一百個,一百天就可以一萬詞,但十年,二十年過去了,你可能還是三千詞以下。
用程序的目的就是百分之百執行到位,沒有折扣,真正戰勝人性的弱點,和t+1沒有關系。
另外通過一定方法降低手續費也可以使你的資金活得更久,如把上面的日模型改為周或月模型。
8. 已知股票數據,如何用Python繪制k線日對應數據
我沒遇到過 只是自己寫過
有點經驗
先確定時間片
然後再把tick插入就行了
9. python的量化代碼怎麼用到股市中
2010 ~ 2017 滬深A股各行業量化分析
在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:
第一,A股市場上都有哪些行業;
第二,各行業自2010年以來的營收、凈利潤增速表現如何?
第一個問題
很好回答,我們使用JQData提供的獲取行業成分股的方法,輸入get_instries(name='sw_l1')
得到申萬一級行業分類結果如下:它們分別是:【農林牧漁、採掘、化工、鋼鐵、有色金屬、電子、家用電器、食品飲料、紡織服裝、輕工製造、醫葯生物、公用事業、交通運輸、房地產、商業貿易、休閑服務、綜合、建築材料、建築裝飾、電器設備、國防軍工、計算機、傳媒、通信、銀行、非銀金融、汽車、機械設備】共計28個行業。
第二個問題
要知道各行業自2010年以來的營收、凈利潤增速表現,我們首先需要知道各行業在各個年度都有哪些成分股,然後加總該行業在該年度各成分股的總營收和凈利潤,就能得到整個行業在該年度的總營收和總利潤了。這部分數據JQData也為我們提供了方便的介面:通過調用get_instry_stocks(instry_code=『行業編碼』, date=『統計日期』),獲取申萬一級行業指定日期下的行業成分股列表,然後再調用查詢財務的數據介面:get_fundamentals(query_object=『query_object』, statDate=year)來獲取各個成分股在對應年度的總營收和凈利潤,最後通過加總得到整個行業的總營收和總利潤。這里為了避免非經常性損益的影響,我們對凈利潤指標最終選取的扣除非經常性損益的凈利潤數據。
我們已經獲取到想要的行業數據了。接下來,我們需要進一步分析,這些行業都有什麼樣的增長特徵。
我們發現,在28個申萬一級行業中,有18個行業自2010年以來在總營收方面保持了持續穩定的增長。它們分別是:【農林牧漁,電子,食品飲料,紡織服裝,輕工製造,醫葯生物,公用事業,交通運輸,房地產,休閑服務,建築裝飾,電氣設備,國防軍工,計算機,傳媒,通信,銀行,汽車】;其他行業在該時間范圍內出現了不同程度的負增長。
那麼,自2010年以來凈利潤保持持續增長的行業又會是哪些呢?結果是只有5個行業保持了基業長青,他們分別是醫葯生物,建築裝飾,電氣設備,銀行和汽車。(註:由於申萬行業在2014年發生過一次大的調整,建築裝飾,電氣設備,銀行和汽車實際從2014年才開始統計。)
從上面的分析結果可以看到,真正能夠保持持續穩定增長的行業並不多,如果以扣非凈利潤為標准,那麼只有醫葯生物,建築裝飾,電氣設備,銀行和汽車這五個行業可以稱之為優質行業,實際投資中,就可以只從這幾個行業中去投資。這樣做的目的是,一方面,能夠從行業大格局層面避免行業下行的風險,繞開一個可能出現負增長的的行業,從而降低投資的風險;另一方面,也大大縮短了我們的投資范圍,讓投資者能夠專注於從真正好的行業去挑選公司進行投資。
「2010-2017」投資於優質行業龍頭的收益表現
選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。
3.1按營業收入規模構建的行業龍頭投資組合
首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:
結論
通過以上行業分析和投資組合的歷史回測可以看到:
先選行業,再選公司,即使是從2015年股災期間開始投資,至2018年5月1號,仍然能夠獲得相對理想的收益,可以說,紅杉資本的賽道投資法則對於一般投資者還是比較靠譜的。
在構建行業龍頭投資組合時,凈利潤指標顯著優於營業收入指標,獲得的投資收益能夠更大的跑贏全市場收益率
市場是不斷波動的,如果一個投資者從股災期間開始投資,那麼即使他買入了上述優質行業的龍頭組合,在近3年也只能獲得12%左右的累計收益;而如果從2016年5月3日開始投資,那麼至2018年5月2日,2年時間就能獲得超過50%以上的收益了。所以,在投資過程中選擇時機也非常重要。
出自:JoinQuant 聚寬數據 JQData