『壹』 河南省瑞鴻能源科技有限公司怎麼樣
河南省瑞鴻能源科技有限公司是2018-01-02注冊成立的有限責任公司(自然人投資或控股),注冊地址位於濮陽市華龍區江漢路九天城西門69棟3號。
河南省瑞鴻能源科技有限公司的統一社會信用代碼/注冊號是91410900MA44RAEK5K,企業法人王芳,目前企業處於開業狀態。
河南省瑞鴻能源科技有限公司的經營范圍是:承接環保工程服務,環保科技推廣、技術咨詢、技術研究;環保裝備、機電設備、鋼結構件的生產銷售及租賃,環保材料的銷售;石油鑽井助劑的銷售及回收處理再利用(不含易燃易爆及危險化學品);油田地面工程的項目研發及施工;鑽井熱力供應,油氣開發技術服務;油田設備、鑽采設備、工程機械設備、井下工具及配件的銷售租賃、維修及技術服務,鍋爐安裝及維修,聚晶金剛石復合片(PDC)鑽頭的生產、銷售、維修及技術服務;錄井、鑽井、固井、井下作業、壓裂及測試,定向井施工,下套管及試壓技術服務;地質鑽探、採油工程服務;地熱水文工程的地質勘查設計及施工;道路普通貨物運輸;銷售:五金交電,金屬製品,鋼材,木材,電動工具,電線電纜,儀器儀表,機械設備,化工產品(不含危險品)。()涉及許可經營項目,應取得相關部門許可後方可經營。
通過愛企查查看河南省瑞鴻能源科技有限公司更多信息和資訊。
『貳』 油氣裝備概念股有哪些 油氣裝備概念上市公司一覽
A股中涉及油氣裝備的概念股,相關上市公司股票一覽:
廣州控股(加入自選股,參加模擬炒股):低估,等待價值重估
川投能源(加入自選股,參加模擬炒股)一季度報點評:投資收益大幅下降影響公司業績
傑瑞股份(加入自選股,參加模擬炒股):改造印尼老油田,海外業務再進一步
江鑽股份(加入自選股,參加模擬炒股):PDC鑽頭發展大勢所趨,資產注入可以期待
恆泰艾普(加入自選股,參加模擬炒股):中東市場和稅費影響對公司業績影響較大
富瑞特裝(加入自選股,參加模擬炒股):股權激勵定調未來三年27%的復合增長率底線
藍科高新(加入自選股,參加模擬炒股)深度報告:鋪就民族高端石化裝備之路
海默科技(加入自選股,參加模擬炒股):身處多相流量計行業前沿,進軍壓裂設備製造
惠博普(加入自選股,參加模擬炒股):技術領先的油田工程和環保綜合供應商
神開股份(加入自選股,參加模擬炒股):非常規氣開發促生鑽采設備行業新星
遼寧成大(加入自選股,參加模擬炒股):價值低估,新疆預期漸顯
通源石油(加入自選股,參加模擬炒股):一體化和國際化,推進盈利穩步增長
江鑽股份:PDC鑽頭發展大勢所趨,資產注入可以期待
恆泰艾普:中東市場和稅費影響對公司業績影響較大
富瑞特裝:股權激勵定調未來三年27%的復合增長率底線
藍科高新深度報告:鋪就民族高端石化裝備之路
海默科技:身處多相流量計行業前沿,進軍壓裂設備製造
惠博普:技術領先的油田工程和環保綜合供應商
神開股份:非常規氣開發促生鑽采設備行業新星
遼寧成大:價值低估,新疆預期漸顯
通源石油:一體化和國際化,推進盈利穩步增長
參考自:財富贏 家網
『叄』 錄井光譜分析儀基值怎麼設置
光譜分析儀中的各項菜單的詳細功能描述需要先閱讀該光譜分析儀的詳細手冊。在實際的測試中,需要根據要求來設置測試條件。若能夠熟練使用光譜分析儀將能更加快捷准確地進行相關指標的測量
『肆』 電動車pdc啥意思
PDC系統,即Parking Distance Control停車距離控制系統, 此套系統主要是協助駕駛者方便停車, 尤其在都會區 PDC是有其需要性, 此套系統就是俗稱的倒車雷達, PDC系統通常會於車的後保險或前後保險設有雷達偵測器, 用以偵測前後方的障礙物, 此套系統主要是要協助駕駛者偵測前後方無法看到的障礙物, 或停車時與它車的距離, 除了方便停車外 更可以保護您的車身。
『伍』 銑刀與鑽頭有什麼區別
區別一、用途不同
銑刀主要用於在銑床上加工平面、台階、溝槽、成形表面和切斷工件等;
鑽頭是進行石油鑽井工作的重要工具之一,一般用於鑽孔。
區別二、類別不同
銑刀分為尖齒銑刀和鏟齒銑刀;鑽頭分為金剛石鑽頭、牙輪鑽頭與刮刀鑽頭。
銑刀,是用於銑削加工的、具有一個或多個刀齒的旋轉刀具。工作時各刀齒依次間歇地切去工件的餘量。
在鑽井過程中鑽頭是破碎岩石的主要工具,井眼是由鑽頭破碎岩石而形成的。一個井眼形成得好壞,所用時間的長短,除與所鑽地層岩石的特性和鑽頭本身的性能有關外,更與鑽頭和地層之間的相互匹配程度有關 。
(5)pdc能源股票價格擴展閱讀:
鑽頭研發歷程:
1969~1975年鄭州三磨所分別生產了幾種不同直徑的JR20SN一2聚晶體,首先用於保徑的孕鑲鑽頭和擴孔器的製造,鑽進礦山7級以下的地層;
在上世紀80年代初期我國自主研發的PDC尚未成功之前,6×6mm聚晶體曾大量用於石油、天然氣鑽井的取芯鑽頭和西瓜皮式的全面鑽進鑽頭;
80年代末一直到現在,PDC製造廠對PDC進行了一系列的改進與創新,使PDC的各項性能得到了很大提高,而各大鑽頭公司隨著能源市場的景氣、原油價格的不斷創新高,他們與石油公司一起積極開發了一系列新型PDC鑽頭,改善了使用效果與擴大了使用領域;
90年代起,從鑽頭水力學角度出發,通過完善鑽井泥漿以控制頁岩中鑽頭泥包現象獲得了成功,使解決鑽進頁岩夾層存在的問題獲得了突破性進展。
『陸』 OpenGL是一門新語言嗎
OpenGL目錄
概述
Open GL現狀
高級功能
OpenGL編程入門
OpenGL與DirectX的區別
[編輯本段]概述
OpenGL - 高性能圖形演算法行業標准
OpenGL™ 是行業領域中最為廣泛接納的 2D/3D 圖形 API, 其自誕生至今已催生了各種計算機平台及設備上的數千優秀應用程序。OpenGL™ 是獨立於視窗操作系統或其它操作系統的,亦是網路透明的。在包含CAD、內容創作、能源、娛樂、游戲開發、製造業、制葯業及虛擬現實等行業領域中,OpenGL™ 幫助程序員實現在 PC、工作站、超級計算機等硬體設備上的高性能、極具沖擊力的高視覺表現力圖形處理軟體的開發。
OpenGL(全寫Open Graphics Library)是個定義了一個跨編程語言、跨平台的編程介面的規格,它用於三維圖象(二維的亦可)。OpenGL是個專業的圖形程序介面,是一個功能強大,調用方便的底層圖形庫。OpenGL的前身是SGI公司為其圖形工作站開發的IRIS GL。IRIS GL是一個工業標準的3D圖形軟體介面,功能雖然強大但是移植性不好,於是SGI公司便在IRIS GL的基礎上開發了OpenGL。OpenGL的英文全稱是「Open Graphics Library」,顧名思義,OpenGL便是「開放的圖形程序介面」。雖然DirectX在家用市場全面領先,但在專業高端繪圖領域,OpenGL是不能被取代的主角。
OpenGL是個與硬體無關的軟體介面,可以在不同的平台如Windows 95、Windows NT、Unix、Linux、MacOS、OS/2之間進行移植。因此,支持OpenGL的軟體具有很好的移植性,可以獲得非常廣泛的應用。由於OpenGL是圖形的底層圖形庫,沒有提供幾何實體圖元,不能直接用以描述場景。但是,通過一些轉換程序,可以很方便地將AutoCAD、3DS/3DSMAX等3D圖形設計軟體製作的DFX和3DS模型文件轉換成OpenGL的頂點數組。
在OpenGL的基礎上還有Open Inventor、Cosmo3D、Optimizer等多種高級圖形庫,適應不同應用。其中,Open Inventor應用最為廣泛。該軟體是基於OpenGL面向對象的工具包,提供創建互動式3D圖形應用程序的對象和方法,提供了預定義的對象和用於交互的事件處理模塊,創建和編輯3D場景的高級應用程序單元,有列印對象和用其它圖形格式交換數據的能力。
OpenGL的發展一直處於一種較為遲緩的態勢,每次版本的提高新增的技術很少,大多隻是對其中部分做出修改和完善。1992年7月,SGI公司發布了OpenGL的1.0版本,隨後又與微軟公司共同開發了Windows NT版本的OpenGL,從而使一些原來必須在高檔圖形工作站上運行的大型3D圖形處理軟體也可以在微機上運用。1995年OpenGL的1.1版本面市,該版本比1.0的性能有許多提高,並加入了一些新的功能。其中包括改進列印機支持,在增強元文件中包含OpenGL的調用,頂點數組的新特性,提高頂點位置、法線、顏色、色彩指數、紋理坐標、多邊形邊緣標識的傳輸速度,引入了新的紋理特性等等。OpenGL 1.5又新增了「OpenGL Shading Language」,該語言是「OpenGL 2.0」的底核,用於著色對象、頂點著色以及片斷著色技術的擴展功能。
OpenGL 2.0標準的主要制訂者並非原來的SGI,而是逐漸在ARB中占據主動地位的3DLabs。2.0版本首先要做的是與舊版本之間的完整兼容性,同時在頂點與像素及內存管理上與DirectX共同合作以維持均勢。OpenGL 2.0將由OpenGL 1.3的現有功能加上與之完全兼容的新功能所組成(如圖一)。藉此可以對在ARB停滯不前時代各家推出的各種糾纏不清的擴展指令集做一次徹底的精簡。此外,硬體可編程能力的實現也提供了一個更好的方法以整合現有的擴展指令。
目前,隨著DirectX的不斷發展和完善,OpenGL的優勢逐漸喪失,至今雖然已有3Dlabs提倡開發的2.0版本面世,在其中加入了很多類似於DirectX中可編程單元的設計,但廠商的用戶的認知程度並不高,未來的OpenGL發展前景迷茫。
[編輯本段]Open GL現狀
Open GL仍然是唯一能夠取代微軟對3D圖形技術的完全控制的API。它仍然具有一定的生命力,但是Silicon Graphics已經不再以任何讓微軟不悅的方式推廣Open GL,因而它存在較高的風險。游戲開發人員是一個有著獨立思想的群體,很多重要的開發人員目前仍然在使用Open GL。因此,硬體開發商正在設法加強對它的支持。Direct3D目前還不能支持高端的圖形設備和專業應用; Open GL在這些領域占據著統治地位。最後,開放源碼社區(尤其是Mesa項目)一直致力於為任何類型的計算機(無論它們是否使用微軟的操作系統)提供Open GL支持。
今年08年正式公布OpenGL3.0版本。並且得到了,nv的支持,其官方網站上提供針對N卡的sdk下載。
[編輯本段]高級功能
OpenGL被設計為只有輸出的,所以它只提供渲染功能。核心API沒有窗口系統、音頻、列印、鍵盤/滑鼠或其它輸入設備的概念。雖然這一開始看起來像是一種限制,但它允許進行渲染的代碼完全獨立於他運行的操作系統,允許跨平台開發。然而,有些整合於原生窗口系統的東西需要允許和宿主系統交互。這通過下列附加API實現:
* GLX - X11(包括透明的網路)
* WGL - Microsoft Windows
* AGL - Apple MacOS
另外,GLUT庫能夠以可移植的方式提供基本的窗口功能。
[編輯本段]OpenGL編程入門
OpenGL作圖非常方便,故日益流行,但對許多人來說,是在微機上進行的,首先碰到的問題是,如何適應微機環境。這往往是最關鍵的一步,雖然也是最初級的。一般的,我不建議使用glut 包.那樣難以充分發揮 windows 的界面上的功能.
下面介紹如何在 VC++ 上進行 OpenGL 編程。 OpenGL 繪圖的一般過程可以看作這樣的,先用 OpenGL 語句在 OpenGL 的繪圖環境 RenderContext (RC)中畫好圖, 然後再通過一個 Swap buffer 的過程把圖傳給操作系統的繪圖環境 DeviceContext (DC)中,實實在在地畫出到屏幕上.
下面以畫一條 Bezier 曲線為例,詳細介紹VC++ 上 OpenGL編程的方法。文中給出了詳細注釋,以便給初學者明確的指引。一步一步地按所述去做,你將順利地畫出第一個 OpenGL 平台上的圖形來。
一、產生程序框架 Test.dsw
New Project | MFC Application Wizard (EXE) | "Test" | OK
*注* : 加「」者指要手工敲入的字串
二、導入 Bezier 曲線類的文件
用下面方法產生 BezierCurve.h BezierCurve.cpp 兩個文件:
WorkSpace | ClassView | Test Classes| <右擊彈出> New Class | Generic Class(不用MFC類) | "CBezierCurve" | OK
三、編輯好 Bezier 曲線類的定義與實現
寫好下面兩個文件:
BezierCurve.h BezierCurve.cpp
四、設置編譯環境:
1. 在 BezierCurve.h 和 TestView.h 內各加上:
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glaux.h>
2. 在集成環境中
Project | Settings | Link | Object/library mole | "opengl32.lib glu32.lib glaux.lib" | OK
五、設置 OpenGL 工作環境:(下面各個操作,均針對 TestView.cpp )
1. 處理 PreCreateWindow(): 設置 OpenGL 繪圖窗口的風格
cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CS_OWNDC;
2. 處理 OnCreate():創建 OpenGL 的繪圖設備。
OpenGL 繪圖的機制是: 先用 OpenGL 的繪圖上下文 Rendering Context (簡稱為 RC )把圖畫好,再把所繪結果通過 SwapBuffer() 函數傳給 Window 的 繪圖上下文 Device Context (簡記為 DC).要注意的是,程序運行過程中,可以有多個 DC,但只能有一個 RC。因此當一個 DC 畫完圖後,要立即釋放 RC,以便其它的 DC 也使用。在後面的代碼中,將有詳細注釋。
int CTestView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
if (CView::OnCreate(lpCreateStruct) == -1)
return -1;
myInitOpenGL();
return 0;
}
void CTestView::myInitOpenGL()
{
m_pDC = new CClientDC(this); //創建 DC
ASSERT(m_pDC != NULL);
if (!mySetupPixelFormat()) //設定繪圖的點陣圖格式,函數下面列出
return;
m_hRC = wglCreateContext(m_pDC->m_hDC);//創建 RC
wglMakeCurrent(m_pDC->m_hDC, m_hRC); //RC 與當前 DC 相關聯
} //CClient * m_pDC; HGLRC m_hRC; 是 CTestView 的成員變數
BOOL CTestView::mySetupPixelFormat()
{//我們暫時不管格式的具體內容是什麼,以後熟悉了再改變格式
static PIXELFORMATDESCRIPTOR pfd =
{
sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd
1, // version number
PFD_DRAW_TO_WINDOW | // support window
PFD_SUPPORT_OPENGL | // support OpenGL
PFD_DOUBLEBUFFER, // double buffered
PFD_TYPE_RGBA, // RGBA type
24, // 24-bit color depth
0, 0, 0, 0, 0, 0, // color bits ignored
0, // no alpha buffer
0, // shift bit ignored
0, // no accumulation buffer
0, 0, 0, 0, // accum bits ignored
32, // 32-bit z-buffer
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main layer
0, // reserved
0, 0, 0 // layer masks ignored
};
int pixelformat;
if ( (pixelformat = ChoosePixelFormat(m_pDC->m_hDC, &pfd)) == 0 )
{
MessageBox("ChoosePixelFormat failed");
return FALSE;
}
if (SetPixelFormat(m_pDC->m_hDC, pixelformat, &pfd) == FALSE)
{
MessageBox("SetPixelFormat failed");
return FALSE;
}
return TRUE;
『柒』 什麼是OpeenGL
OpenGL目錄
概述
Open GL現狀
高級功能
OpenGL編程入門
OpenGL與DirectX的區別
概述
OpenGL - 高性能圖形演算法行業標准
OpenGL™ 是行業領域中最為廣泛接納的 2D/3D 圖形 API, 其自誕生至今已催生了各種計算機平台及設備上的數千優秀應用程序。OpenGL™ 是獨立於視窗操作系統或其它操作系統的,亦是網路透明的。在包含CAD、內容創作、能源、娛樂、游戲開發、製造業、制葯業及虛擬現實等行業領域中,OpenGL™ 幫助程序員實現在 PC、工作站、超級計算機等硬體設備上的高性能、極具沖擊力的高視覺表現力圖形處理軟體的開發。
OpenGL(全寫Open Graphics Library)是個定義了一個跨編程語言、跨平台的編程介面的規格,它用於三維圖象(二維的亦可)。OpenGL是個專業的圖形程序介面,是一個功能強大,調用方便的底層圖形庫。OpenGL的前身是SGI公司為其圖形工作站開發的IRIS GL。IRIS GL是一個工業標準的3D圖形軟體介面,功能雖然強大但是移植性不好,於是SGI公司便在IRIS GL的基礎上開發了OpenGL。OpenGL的英文全稱是「Open Graphics Library」,顧名思義,OpenGL便是「開放的圖形程序介面」。雖然DirectX在家用市場全面領先,但在專業高端繪圖領域,OpenGL是不能被取代的主角。
OpenGL是個與硬體無關的軟體介面,可以在不同的平台如Windows 95、Windows NT、Unix、Linux、MacOS、OS/2之間進行移植。因此,支持OpenGL的軟體具有很好的移植性,可以獲得非常廣泛的應用。由於OpenGL是圖形的底層圖形庫,沒有提供幾何實體圖元,不能直接用以描述場景。但是,通過一些轉換程序,可以很方便地將AutoCAD、3DS/3DSMAX等3D圖形設計軟體製作的DXF和3DS模型文件轉換成OpenGL的頂點數組。
在OpenGL的基礎上還有Open Inventor、Cosmo3D、Optimizer等多種高級圖形庫,適應不同應用。其中,Open Inventor應用最為廣泛。該軟體是基於OpenGL面向對象的工具包,提供創建互動式3D圖形應用程序的對象和方法,提供了預定義的對象和用於交互的事件處理模塊,創建和編輯3D場景的高級應用程序單元,有列印對象和用其它圖形格式交換數據的能力。
OpenGL的發展一直處於一種較為遲緩的態勢,每次版本的提高新增的技術很少,大多隻是對其中部分做出修改和完善。1992年7月,SGI公司發布了OpenGL的1.0版本,隨後又與微軟公司共同開發了Windows NT版本的OpenGL,從而使一些原來必須在高檔圖形工作站上運行的大型3D圖形處理軟體也可以在微機上運用。1995年OpenGL的1.1版本面市,該版本比1.0的性能有許多提高,並加入了一些新的功能。其中包括改進列印機支持,在增強元文件中包含OpenGL的調用,頂點數組的新特性,提高頂點位置、法線、顏色、色彩指數、紋理坐標、多邊形邊緣標識的傳輸速度,引入了新的紋理特性等等。OpenGL 1.5又新增了「OpenGL Shading Language」,該語言是「OpenGL 2.0」的底核,用於著色對象、頂點著色以及片斷著色技術的擴展功能。
OpenGL 2.0標準的主要制訂者並非原來的SGI,而是逐漸在ARB中占據主動地位的3DLabs。2.0版本首先要做的是與舊版本之間的完整兼容性,同時在頂點與像素及內存管理上與DirectX共同合作以維持均勢。OpenGL 2.0將由OpenGL 1.3的現有功能加上與之完全兼容的新功能所組成(如圖一)。藉此可以對在ARB停滯不前時代各家推出的各種糾纏不清的擴展指令集做一次徹底的精簡。此外,硬體可編程能力的實現也提供了一個更好的方法以整合現有的擴展指令。
目前,隨著DirectX的不斷發展和完善,OpenGL的優勢逐漸喪失,至今雖然已有3Dlabs提倡開發的2.0版本面世,在其中加入了很多類似於DirectX中可編程單元的設計,但廠商的用戶的認知程度並不高,未來的OpenGL發展前景迷茫。
[編輯本段]Open GL現狀
Open GL仍然是唯一能夠取代微軟對3D圖形技術的完全控制的API。它仍然具有一定的生命力,但是Silicon Graphics已經不再以任何讓微軟不悅的方式推廣Open GL,因而它存在較高的風險。游戲開發人員是一個有著獨立思想的群體,很多重要的開發人員目前仍然在使用Open GL。因此,硬體開發商正在設法加強對它的支持。Direct3D目前還不能支持高端的圖形設備和專業應用; Open GL在這些領域占據著統治地位。最後,開放源碼社區(尤其是Mesa項目)一直致力於為任何類型的計算機(無論它們是否使用微軟的操作系統)提供Open GL支持。
今年08年正式公布OpenGL3.0版本。並且得到了,nv的支持,其官方網站上提供針對N卡的sdk下載。
[編輯本段]高級功能
OpenGL被設計為只有輸出的,所以它只提供渲染功能。核心API沒有窗口系統、音頻、列印、鍵盤/滑鼠或其它輸入設備的概念。雖然這一開始看起來像是一種限制,但它允許進行渲染的代碼完全獨立於他運行的操作系統,允許跨平台開發。然而,有些整合於原生窗口系統的東西需要允許和宿主系統交互。這通過下列附加API實現:
* GLX - X11(包括透明的網路)
* WGL - Microsoft Windows
* AGL - Apple MacOS
另外,GLUT庫能夠以可移植的方式提供基本的窗口功能。
[編輯本段]OpenGL編程入門
OpenGL作圖非常方便,故日益流行,但對許多人來說,是在微機上進行的,首先碰到的問題是,如何適應微機環境。這往往是最關鍵的一步,雖然也是最初級的。一般的,我不建議使用glut 包.那樣難以充分發揮 windows 的界面上的功能.
下面介紹如何在 VC++ 上進行 OpenGL 編程。 OpenGL 繪圖的一般過程可以看作這樣的,先用 OpenGL 語句在 OpenGL 的繪圖環境 RenderContext (RC)中畫好圖, 然後再通過一個 Swap buffer 的過程把圖傳給操作系統的繪圖環境 DeviceContext (DC)中,實實在在地畫出到屏幕上.
下面以畫一條 Bezier 曲線為例,詳細介紹VC++ 上 OpenGL編程的方法。文中給出了詳細注釋,以便給初學者明確的指引。一步一步地按所述去做,你將順利地畫出第一個 OpenGL 平台上的圖形來。
一、產生程序框架 Test.dsw
New Project | MFC Application Wizard (EXE) | "Test" | OK
*注* : 加「」者指要手工敲入的字串
二、導入 Bezier 曲線類的文件
用下面方法產生 BezierCurve.h BezierCurve.cpp 兩個文件:
WorkSpace | ClassView | Test Classes| <右擊彈出> New Class | Generic Class(不用MFC類) | "CBezierCurve" | OK
三、編輯好 Bezier 曲線類的定義與實現
寫好下面兩個文件:
BezierCurve.h BezierCurve.cpp
四、設置編譯環境:
1. 在 BezierCurve.h 和 TestView.h 內各加上:
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glaux.h>
2. 在集成環境中
Project | Settings | Link | Object/library mole | "opengl32.lib glu32.lib glaux.lib" | OK
五、設置 OpenGL 工作環境:(下面各個操作,均針對 TestView.cpp )
1. 處理 PreCreateWindow(): 設置 OpenGL 繪圖窗口的風格
cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CS_OWNDC;
2. 處理 OnCreate():創建 OpenGL 的繪圖設備。
OpenGL 繪圖的機制是: 先用 OpenGL 的繪圖上下文 Rendering Context (簡稱為 RC )把圖畫好,再把所繪結果通過 SwapBuffer() 函數傳給 Window 的 繪圖上下文 Device Context (簡記為 DC).要注意的是,程序運行過程中,可以有多個 DC,但只能有一個 RC。因此當一個 DC 畫完圖後,要立即釋放 RC,以便其它的 DC 也使用。在後面的代碼中,將有詳細注釋。
int CTestView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
if (CView::OnCreate(lpCreateStruct) == -1)
return -1;
myInitOpenGL();
return 0;
}
void CTestView::myInitOpenGL()
{
m_pDC = new CClientDC(this); //創建 DC
ASSERT(m_pDC != NULL);
if (!mySetupPixelFormat()) //設定繪圖的點陣圖格式,函數下面列出
return;
m_hRC = wglCreateContext(m_pDC->m_hDC);//創建 RC
wglMakeCurrent(m_pDC->m_hDC, m_hRC); //RC 與當前 DC 相關聯
} //CClient * m_pDC; HGLRC m_hRC; 是 CTestView 的成員變數
BOOL CTestView::mySetupPixelFormat()
{//我們暫時不管格式的具體內容是什麼,以後熟悉了再改變格式
static PIXELFORMATDESCRIPTOR pfd =
{
sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd
1, // version number
PFD_DRAW_TO_WINDOW | // support window
PFD_SUPPORT_OPENGL | // support OpenGL
PFD_DOUBLEBUFFER, // double buffered
PFD_TYPE_RGBA, // RGBA type
24, // 24-bit color depth
0, 0, 0, 0, 0, 0, // color bits ignored
0, // no alpha buffer
0, // shift bit ignored
0, // no accumulation buffer
0, 0, 0, 0, // accum bits ignored
32, // 32-bit z-buffer
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main layer
0, // reserved
0, 0, 0 // layer masks ignored
};
int pixelformat;
if ( (pixelformat = ChoosePixelFormat(m_pDC->m_hDC, &pfd)) == 0 )
{
MessageBox("ChoosePixelFormat failed");
return FALSE;
}
if (SetPixelFormat(m_pDC->m_hDC, pixelformat, &pfd) == FALSE)
{
MessageBox("SetPixelFormat failed");
return FALSE;
}
return TRUE;
}
3. 處理 OnDestroy()
void CTestView::OnDestroy()
{
wglMakeCurrent(m_pDC->m_hDC,NULL); //釋放與m_hDC 對應的 RC
wglDeleteContext(m_hRC); //刪除 RC
if (m_pDC)
delete m_pDC; //刪除當前 View 擁有的 DC
CView::OnDestroy();
}
4. 處理 OnEraseBkgnd()
BOOL CTestView::OnEraseBkgnd(CDC* pDC)
{
// TODO: Add your message handler code here and/or call default
// return CView::OnEraseBkgnd(pDC);
//把這句話注釋掉,若不然,Window
//會用白色北景來刷新,導致畫面閃爍
return TRUE;//只要空返回即可。
}
5. 處理 OnDraw()
void CTestView::OnDraw(CDC* pDC)
{
wglMakeCurrent(m_pDC->m_hDC,m_hRC);//使 RC 與當前 DC 相關聯
myDrawScene( ); //具體的繪圖函數,在 RC 中繪制
SwapBuffers(m_pDC->m_hDC);//把 RC 中所繪傳到當前的 DC 上,從而
//在屏幕上顯示
wglMakeCurrent(m_pDC->m_hDC,NULL);//釋放 RC,以便其它 DC 進行繪圖
}
void CTestView::myDrawScene( )
{
glClearColor(0.0f,0.0f,0.0f,1.0f);//設置背景顏色為黑色
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glTranslated(0.0f,0.0f,-3.0f);//把物體沿(0,0,-1)方向平移
//以便投影時可見。因為預設的視點在(0,0,0),只有移開
//物體才能可見。
//本例是為了演示平面 Bezier 曲線的,只要作一個旋轉
//變換,可更清楚的看到其 3D 效果。
//下面畫一條 Bezier 曲線
bezier_curve.myPolygon();//畫Bezier曲線的控制多邊形
bezier_curve.myDraw(); //CBezierCurve bezier_curve
//是 CTestView 的成員變數
//具體的函數見附錄
glPopMatrix();
glFlush(); //結束 RC 繪圖
return;
}
6. 處理 OnSize()
void CTestView::OnSize(UINT nType, int cx, int cy)
{
CView::OnSize(nType, cx, cy);
VERIFY(wglMakeCurrent(m_pDC->m_hDC,m_hRC));//確認RC與當前DC關聯
w=cx;
h=cy;
VERIFY(wglMakeCurrent(NULL,NULL));//確認DC釋放RC
}
7 處理 OnLButtonDown()
void CTestView::OnLButtonDown(UINT nFlags, CPoint point)
{
CView::OnLButtonDown(nFlags, point);
if(bezier_curve.m_N>MAX-1)
{
MessageBox("頂點個數超過了最大數MAX=50");
return;
}
//以下為坐標變換作準備
GetClientRect(&m_ClientRect);//獲取視口區域大小
w=m_ClientRect.right-m_ClientRect.left;//視口寬度 w
h=m_ClientRect.bottom-m_ClientRect.top;//視口高度 h
//w,h 是CTestView的成員變數
centerx=(m_ClientRect.left+m_ClientRect.right)/2;//中心位置,
centery=(m_ClientRect.top+m_ClientRect.bottom)/2;//取之作原點
//centerx,centery 是 CTestView 的成員變數
GLdouble tmpx,tmpy;
tmpx=scrx2glx(point.x);//屏幕上點坐標轉化為OpenGL畫圖的規范坐標
tmpy=scry2gly(point.y);
bezier_curve.m_Vertex[bezier_curve.m_N].x=tmpx;//加一個頂點
bezier_curve.m_Vertex[bezier_curve.m_N].y=tmpy;
bezier_curve.m_N++;//頂點數加一
InvalidateRect(NULL,TRUE);//發送刷新重繪消息
}
double CTestView::scrx2glx(int scrx)
{
return (double)(scrx-centerx)/double(h);
}
double CTestView::scry2gly(int scry)
{
}
附錄:
1.CBezierCurve 的聲明: (BezierCurve.h)
class CBezierCurve
{
public:
myPOINT2D m_Vertex[MAX];//控制頂點,以數組存儲
//myPOINT2D 是一個存二維點的結構
//成員為Gldouble x,y
int m_N; //控制頂點的個數
public:
CBezierCurve();
virtual ~CBezierCurve();
void bezier_generation(myPOINT2D P[MAX],int level);
//演算法的具體實現
void myDraw();//畫曲線函數
void myPolygon(); //畫控制多邊形
};
2. CBezierCurve 的實現: (BezierCurve.cpp)
CBezierCurve::CBezierCurve()
{
m_N=4;
m_Vertex[0].x=-0.5f;
m_Vertex[0].y=-0.5f;
m_Vertex[1].x=-0.5f;
m_Vertex[1].y=0.5f;
m_Vertex[2].x=0.5f;
m_Vertex[2].y=0.5f;
m_Vertex[3].x=0.5f;
m_Vertex[3].y=-0.5f;
}
CBezierCurve::~CBezierCurve()
{
}
void CBezierCurve::myDraw()
{
bezier_generation(m_Vertex,LEVEL);
}
void CBezierCurve::bezier_generation(myPOINT2D P[MAX], int level)
{ //演算法的具體描述,請參考相關書本
int i,j;
level--;
if(level<0)return;
if(level==0)
{
glColor3f(1.0f,1.0f,1.0f);
glBegin(GL_LINES); //畫出線段
glVertex2d(P[0].x,P[0].y);
glVertex2d(P[m_N-1].x,P[m_N-1].y);
glEnd();//結束畫線段
return; //遞歸到了最底層,跳出遞歸
}
myPOINT2D Q[MAX],R[MAX];
for(i=0;i {
Q.x=P.x;
Q.y=P.y;
}
for(i=1;i<m_N;i++)
{
R[m_N-i].x=Q[m_N-1].x;
R[m_N-i].y=Q[m_N-1].y;
for(j=m_N-1;j>=i;j--)
{
Q[j].x=(Q[j-1].x+Q[j].x)/double(2);
Q[j].y=(Q[j-1].y+Q[j].y)/double(2);
}
}
R[0].x=Q[m_N-1].x;
R[0].y=Q[m_N-1].y;
bezier_generation(Q,level);
bezier_generation(R,level);
}
void CBezierCurve::myPolygon()
{
glBegin(GL_LINE_STRIP); //畫出連線段
glColor3f(0.2f,0.4f,0.4f);
for(int i=0;i<m_N;i++)
{
glVertex2d(m_Vertex.x,m_Vertex.y);
}
glEnd();//結束畫連線段
}
[編輯本段]OpenGL與DirectX的區別
OpenGL 只是圖形函數庫。
DirectX 包含圖形, 聲音, 輸入, 網路等模塊。
OpenGL穩定,可跨平台使用。DirectX僅能用於Windows系列平台,包括Windows Mobile/CE系列以及XBOX/XBOX360。
----------------------------------------------------------------------------------------------
1995年至1996年,微軟實行了一項新計劃,以支持在Windows95上運行游戲,目標是把市場擴展到被任天堂和世嘉控制的游戲領域。然而,微軟不想用已經在NT上提供的OpenGL技術。微軟收購了Rendermorphics,Ltd.並得到他的被稱作RealityLab的3D API。經重新整理,微軟發布了新的3D API——Direct3D。
微軟,推行Direct3D,凍結OpenGL!
微軟當時拒絕了在Window95上支持OpenGL。不止如此,微軟採取異常手段收回對OpenGL的MCD驅動介面的支持,以致硬體廠商不得不放棄已經進入最後測試的OpenGL驅動。微軟的市場部門開始向游戲開發商、硬體廠商、新聞出版機構推銷Direct3D,同時排斥OpenGL。
API之戰!
Silicon Graphics和很多OpenGL用戶都依賴OpenGL創新且高性能的技術。但很明顯微軟打算用Direct3D代替OpenGL,盡管D3D有很多問題而且不能像OpenGL那樣被硬體廠商擴展。Silicon Graphics決定在1996 SIGGRAPH會議上作一項演示。演示證明OpenGL至少和D3D一樣快,從而駁倒微軟的市場論調。因為OpenGL是業界公認標准,比D3D功能豐富,而且圖像質量要高一些,所以演示在計算機圖形和游戲開發社區導致了激烈論戰。
游戲開發者要求OpenGL和D3D站在同等地位!
當技術和市場問題暴露,強烈的支持OpenGL行動開始了。Doom的開發者John Carmack聲明拒絕D3D,Chris Hecker在游戲開發雜志上發表了兩套API的全面分析,移微軟應放棄D3D為結論。游戲開發者先後兩次向微軟遞交請願書。第一次由56名首席游戲開發者要求微軟發行OpenGL MCD驅動,但未成功,因為會讓OpenGL與D3D競爭。第二次的公開信由254人簽名開始,截止時達到1400人。微軟的回答仍是重申舊市場立場。盡管請願者清楚的要求兩套API同等競爭以促進發展,微軟卻以增加D3D的投資、更加減少OpenGL的投資為回應。
Fahrenheit——D3D與OpenGL的合並?
Silicon Graphics,Microsoft, HP,Intel達成協議聯合開發下一代3D API——Fahrenheit。但不了了之,因為微軟的打算是把OpenGL的技術用到D3D里並且以此之名驅除OpenGL的威脅。(估計DirectX 8 Graphics即是剩下微軟獨自開發的Fahrenheit,吸收了OpenGL的很多東西。)
OpenGL豪氣不減當年!
OpenGL依然是唯一能與微軟單獨控制的D3D對立的API,盡管Silicon Graphics不再以任何微軟不能接受的方式推行OpenGL。游戲開發這是獨立的,並且很多關鍵人物在用OpenGL,因此,硬體廠商正努力提高對其支持。D3D仍不能支持高端圖像和專業應用,而OpenGL主宰著這些土地。在開放原碼社區,Mesa項目正提供獨立於微軟的OpenGL驅動。
譯者註:表面上好像D3D比OpenGL支持更多的功能,其實由於D3D不支持硬體擴展,如硬體全景陰影,硬體渲染順序無關半透明材質等新技術根本無法使用,而D3D(特指D3D8)本身提供的功能只有一小部分能在使用HAL且硬體不支持時模擬,你要用大量代碼分析硬體能力和採取不同策略
『捌』 銑刀跟鑽頭的外型區別
鍵槽銑刀和麻花鑽有點相似,仔細觀察不難區分.
鍵槽銑刀很短,外園的兩條刀刃有後角,能起切削作用,兩條刀刃相交於一點幾乎沒有橫刃,它只有整數尺寸.
麻花鑽比較長,外園的兩條刃帶沒有後角,只起減少摩擦的作用,兩條刀刃不相交於一點,有一段橫刃,它每0.
1毫米一級,有許多尺寸.
立銑刀也很短,有三條以上刀刃,比較容易區分.