當前位置:首頁 » 價格知識 » 馬爾可夫鏈股票價格
擴展閱讀
股票交易灰線 2025-06-17 12:36:03
四方精創的股票代碼 2025-06-17 11:56:52
廣西田園股票代碼 2025-06-17 11:46:11

馬爾可夫鏈股票價格

發布時間: 2021-05-28 23:27:08

① 有木有數學系的大神,能幫我解答一下:馬爾科夫鏈可以預測的除了天氣,股票,地下水位這些。還有什麼呢

馬爾可夫鏈,因安德烈·馬爾可夫(A.A.Markov,1856-1922)得名,是數學中具有馬爾可夫性質的離散事件隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當前以前的歷史狀態)對於預測將來(即當前以後的未來狀態)是無關的。

② 馬爾科夫 初始概率和絕對概率怎麼計算

此處根據的是隨機過程馬爾可夫鏈中的極限分布定理。
設此處的平衡概率向量為x=(x1,x2,x3),並且記已知的轉移概率矩陣為:
p=00.80.2
00.60.4
1.000
則根據馬爾可夫鏈的極限分布定理,應有xp=x,即:
(x1,x2,x3)*(00.80.2
00.60.4
1.000)
=(x1,x2,x3)
利用矩陣乘法,上式等價於3個等式:
x3=x1
0.8x1+0.6x2=x2
0.2x1+0.4x2=x3
由以上三個等式只能解得:x3=x1,以及x2=2x1
另外,再加上平衡概率向量x的歸一性,即:x1+x2+x3=1
最終可解得:x1=0.25,x2=0.5,x3=0.25
不懂再問,祝好!

③ 加權馬爾科夫鏈是什麼原理

由於每個時段的股票價格序列是一列相依的隨機變數,各階自相關系數刻畫了各種滯時(各個時段)的股票價格之間的相關關系的強弱。因此,可考慮先分別依其前面若干時段的股票價格(對應的狀態)對該時間段股票價格的狀態進行預測,然後,按前面各時段與該時段相依關系的強弱加權求和來進行預測和綜合分析,即可以達到充分、合理地利用歷史數據進行預測的目的,而且經這樣分析之後確定的投資策略也應該是更加合理的。這就是加權馬爾可夫鏈預測的基本思想。

④ 運籌學的目錄:

第1章 微積分和概率論
1.1積分
1.2積分求導
1.3概率的基本法則
1.4貝葉斯法則
1.5隨機變數、均值、方差和協方差
1.5.1離散型隨機變數
1.5.2連續型隨機變數
1.5.3隨機變數的均值和方差
1.5.4獨立隨機變數
1.5.5兩個隨機變數的協方差
1.5.6隨機變數之和的均值、方差與協方差
1.6正態分布
1.6.1正態分布的重要性質
1.6.2利用標准化求正態概率
1.6.3利用Excel求正態概率
1.7z變換
1.8本章小結
1.8.1確定不定積分的公式
1.8.2對積分求導的萊布尼茲法則
1.8.3概率
1.8.4貝葉斯法則
1.8.5隨機變數、均值、方差和協方差
1.8.6正態分布的重要性質
1.8.7z變換
1.9復習題
第2章 不確定決策
2.1決策准則
2.1.1受支配動作
2.1.2悲觀准則
2.1.3樂觀准則
2.1.4遺憾准則
2.1.5預期值准則
2.2效用理論
2.2.1馮·諾依曼?摩根斯坦公理
2.2.2為什麼我們可以假設u(最壞結果)=0和u(最好結果)=1
2.2.3評估一個人的效用函數
2.2.4一個人的效用函數和他或她面對風險的態度之間的關系
2.2.5指數效用函數
2.3預期效用最大化的缺陷: 前景效用理論和架構效應
2.3.1前景效用理論
2.3.2架構
2.4決策樹
2.4.1將風險規避結合進決策樹分析
2.4.2樣本信息的預期值
2.4.3完善信息的預期值
2.5貝葉斯法則和決策樹
2.6多目標決策
2.6.1確定情況下的多屬性決策: 目標規劃
2.6.2多屬性效用函數
2.7解析分層進程
2.7.1獲得各個目標的權
2.7.2檢查一致性
2.7.3求目標選擇的分數
2.7.4在電子表格上實現AHP
2.8本章小結
2.8.1決策准則
2.8.2效用理論
2.8.3前景效用理論和架構
2.8.4決策樹
2.8.5貝葉斯法則和決策樹
2.8.6多目標決策
2.8.7AHP
2.9復習題
第3章 確定型EOQ存儲模型
3.1基本的存儲模型
3.1.1存儲模型所涉及的費用
3.1.2EOQ模型的假設
3.2基本的EOQ模型
3.2.1基本EOQ模型的假設
3.2.2基本EOQ模型的導出
3.2.3總費用對於訂購數量微小變化的靈敏度
3.2.4在以庫存的美元價值表示存儲費用時確定EOQ
3.2.5非零交付周期的影響
3.2.6基本EOQ模型的電子表格模板
3.2.7二冪訂購策略
3.3計算允許數量折扣時的最優訂購量
3.4連續速率的EOQ模型
3.5允許延期交貨的EOQ模型
3.6什麼時候使用EOQ模型
3.7多產品EOQ模型
3.8本章小結
3.8.1表示法
3.8.2基本EOQ模型
3.8.3數量折扣模型
3.8.4連續速率模型
3.8.5允許延期交貨的EOQ
3.9復習題
第4章 隨機型存儲模型
4.1單周期決策模型
4.2邊際分析的概念
4.3賣報人問題: 離散需求
4.4賣報人問題: 連續需求
4.5其他單周期模型
4.6包含不確定需求的EOQ: (r,q)和(s,S)模型
4.6.1確定再訂購點: 允許延期交貨的情況
4.6.2確定再訂購點: 脫銷情況
4.6.3連續檢查(r,q)策略
4.6.4連續檢查(s,S)策略
4.7具有不確定需求的EOQ: 確定安全庫存等級的服務等級法
4.7.1確定SLM1的再訂購點和安全庫存水平
4.7.2使用LINGO計算SLM1的再訂購點等級
4.7.3使用Excel計算正態損失函數
4.7.4確定SLM2的再訂購點和安全庫存水平
4.8(R,S)定期檢查策略
4.8.1確定R
4.8.2實現(R,S)系統
4.9ABC存儲分類系統
4.10交換曲線
4.10.1缺貨的交換曲線
4.10.2交換曲面
4.11本章小結
4.11.1單周期決策模型
4.11.2賣報人問題
4.11.3確定不確定需求的再訂購點和訂購量: 最小化年度預期費用
4.11.4確定再訂購點: 服務等級法
4.11.5(R,S)定期檢查策略
4.11.6ABC分類
4.11.7交換曲線
4.12復習題
第5章 馬爾可夫鏈
5.1什麼是隨機過程
5.2什麼是馬爾可夫鏈
5.3n步轉移概率
5.4馬爾可夫鏈中的狀態分類
5.5穩態概率和平均最先通過時間
5.5.1暫態分析
5.5.2穩態概率的直觀解釋
5.5.3穩態概率在決策中的用法
5.5.4平均最先通過時間
5.5.5在計算機上求解穩態概率和平均最先通過時間
5.6吸收鏈
5.7勞動力規劃模型
5.8本章小結
5.8.1n步轉移概率
5.8.2馬爾可夫鏈中的狀態分類
5.8.3穩態概率
5.8.4吸收鏈
5.8.5勞動力規劃模型
5.9復習題
第6章 確定性動態規劃
6.1兩個難題
6.2網路問題
6.2.1動態規劃的計算效率
6.2.2動態規劃應用的特徵
6.3存儲問題
6.4資源分配問題
6.4.1資源示例的網路表示
6.4.2廣義的資源分配問題
6.4.3使用動態規劃求解背包問題
6.4.4背包問題的網路表示
6.4.5背包問題的可供選擇的遞歸
6.4.6收費理論
6.5設備更新問題
6.5.1設備更新問題的網路表示
6.5.2可供選擇的遞歸
6.6表述動態規劃遞歸
6.6.1將資金的時間價值納入動態規劃表述中
6.6.2使用動態規劃的計算難點
6.6.3非求和遞歸
6.7Wagner?Whitin演算法和Silver?Meal啟發式演算法
6.7.1動態批量模型簡介
6.7.2Wagner?Whitin演算法的論述
6.7.3Silver?Meal啟發式演算法
6.8使用Excel求解動態規劃問題
6.8.1在電子表格上求解背包問題
6.8.2在電子表格上求解一般的資源分配問題
6.8.3在電子表格上求解庫存問題
6.9本章小結
6.9.1逆推
6.9.2動態批量模型的Wagner?Whitin演算法和Silver?Meal啟發式演算法
6.9.3計算時的注意事項
6.10復習題
第7章 隨機性動態規劃
7.1當前階段的費用不確定,而下一周期的狀態確定
7.2隨機性存儲模型
7.3如何最大化有利事件發生的概率
7.4隨機性動態規劃表述的更多示例
7.5馬爾可夫決策過程
7.5.1MDP的描述
7.5.2策略迭代
7.5.3線性規劃
7.5.4值迭代
7.5.5最大化每個周期的平均收益
7.6本章小結
7.6.1表述隨機性動態規劃問題(PDP)的關鍵
7.6.2最大化有利事件發生的概率
7.6.3馬爾可夫決策過程
7.6.4策略迭代
7.6.5線性規劃
7.6.6值迭代或連續近似值
7.7復習題
第8章 排隊論
8.1一些排隊術語
8.1.1輸入或到達過程
8.1.2輸出或者服務過程
8.1.3排隊規則
8.1.4到達者加入隊列的方式
8.2建立到達和服務過程的模型
8.2.1建立到達過程的模型
8.2.2建立服務過程的模型
8.2.3排隊系統的kendall?Lee符號表示法
8.2.4等待時間矛盾論
8.3生滅過程
8.3.1生滅過程的動作定理
8.3.2指數分布與生滅過程的關系
8.3.3生滅過程的穩態概率的推導
8.3.4求解生滅流量平衡方程
8.3.5使用電子表格計算穩態概率
8.4M/M/1/GD/∞/∞排隊系統和排隊公式L=λW
8.4.1穩態概率的推導
8.4.2L的推導
8.4.3Lq的推導
8.4.4Ls的推導
8.4.5排隊公式L=λW
8.4.6排隊優化模型
8.4.7使用電子表格計算M/M/1/GD/∞/∞排隊系統
8.5M/M/1/GD/c/∞排隊系統
8.6M/M/s/GD/∞/∞排隊系統
8.6.1使用電子表格計算M/M/s/GD/∞/∞排隊系統
8.6.2使用LINGO計算M/M/s/GD/∞/∞排隊系統
8.7M/G/∞/GD/∞/∞和GI/G/∞/GD/∞/∞模型
8.8M/G/1/GD/∞/∞排隊系統
8.9有限源模型: 機器維修模型
8.9.1使用電子表格計算機器維修問題
8.9.2使用LINGO計算機器維修模型
8.10串列指數分布隊列和開放式排隊網路
8.10.1開放式排隊網路
8.10.2數據通信網路的網路模型
8.11M/G/s/GD/s/∞系統(被阻擋客戶被清除)
8.11.1使用電子表格計算BCC模型
8.11.2使用LINGO計算BCC模型
8.12如何斷定到達時間間隔和服務時間服從指數分布
8.13閉合式排隊網路
8.14G/G/m排隊系統的近似求解法
8.15優先排隊模型
8.15.1非搶占式優先模型
8.15.2Mi/Gi/1/NPRP/∞/∞模型
8.15.3具有客戶等待成本的Mi/Gi/1/NPRP/∞/∞模型
8.15.4Mi/M/s/NPRP/∞/∞模型
8.15.5搶占式優先順序
8.16排隊系統的瞬變行為
8.17本章小結
8.17.1指數分布
8.17.2愛爾朗分布
8.17.3生滅過程
8.17.4排隊系統參數的表示法
8.17.5M/M/1/GD/∞/∞模型
8.17.6M/M/1/GD/c/∞模型
8.17.7M/M/s/GD/∞/∞模型
8.17.8M/G/∞/GD/∞/∞模型
8.17.9M/G/1/GD/∞/∞模型
8.17.10機器維修(M/M/R/GD/K/K)模型
8.17.11串列指數分布隊列
8.17.12M/G/s/GD/s/∞模型
8.17.13到達時間間隔或服務時間不服從指數分布的處理
8.17.14閉合式排隊網路
8.17.15G/G/m排隊系統的近似求解法
8.17.16排隊系統的瞬變行為
8.18復習題
第9章 模擬技術
9.1基本術語
9.2離散事件模擬示例
9.3隨機數和蒙特卡羅模擬
9.3.1隨機數生成器
9.3.2隨機數的計算機生成
9.4蒙特卡羅模擬示例
9.5使用連續隨機變數執行模擬
9.5.1逆轉方法
9.5.2接受?排除法
9.5.3正態分布的直接和卷積方法
9.6隨機模擬示例
9.7模擬中的統計分析
9.8模擬語言
9.9模擬過程
9.10本章小結
9.10.1模擬簡介
9.10.2模擬過程
9.10.3生成隨機變數
9.10.4模擬類型
9.11復習題
第10章 使用Process Model執行模擬
10.1模擬M/M/1排隊系統
10.2模擬M/M/2系統
10.3模擬串列系統
10.4模擬開放式排隊網路
10.5模擬愛爾朗服務時間
10.6Process Model的其他功能
10.7復習題
第11章 使用Excel插件@Risk執行模擬
11.1@Risk簡介: 賣報人問題
11.1.1求解預期利潤的置信區間
11.1.2使用RISKNORMAL函數建立正態需求模型
11.1.3求解目標和百分比
11.1.4用@Risk創建圖
11.1.5使用Report Settings選項
11.1.6使用@Risk統計
11.2建立新產品現金流模型
11.2.1三角形隨機變數
11.2.2Lilly模型
11.3項目計劃模型
11.4可靠性和保修建模
11.4.1機器使用壽命的分布
11.4.2機器組合的一般類型
11.4.3 估計保修費用
11.5RISKGENERAL函數
11.6RISKCUMULATIVE隨機變數
11.7RISKTRIGEN隨機變數
11.8基於點值預測創建分布
11.9預測大型公司的收入
11.9.1凈收入不相關的求解方法
11.9.2檢查相關性
11.10使用數據獲得新產品模擬的輸入
11.10.1模擬容量不確定性的方案
11.10.2用一個獨立變數模擬統計關系
11.11模擬和投標
11.12用@Risk玩擲雙骰子游戲
11.13模擬NBA總決賽
11.14復習題
第12章 使用Riskoptimizer在不確定情況下實現最優化
12.1Riskoptimizer介紹: 賣報人問題
12.1.1Settings圖標
12.1.2Start Optimization圖標
12.1.3Pause Optimization圖標
12.1.4Stop Optimization圖標
12.1.5Display Watcher圖標
12.1.6將Riskoptimizer用於日歷示例
12.2涉及歷史數據的賣報人問題
12.3不確定情況下的人員安排
12.4產品組合問題
12.5不確定情況下的農業計劃
12.6加工車間作業安排
12.7旅行推銷員問題
12.8復習題
第13章 期權定價和實際期權
13.1股票價格的對數正態模型
13.1.1均值的歷史數據估計和股票利潤的波動率
13.1.2求對數正態分布變數的均值和方差
13.1.3對數正態隨機變數的置信區間
13.2期權的定義
13.3實際期權的類型
13.3.1購買飛機的期權
13.3.2放棄期權
13.3.3其他實際期權機會
13.4用套利法評估期權
13.4.1在買入期權定價不當的情況下創造賺錢機器
13.4.2為什麼股票的上漲率不影響買入價格
13.5Black?Scholes期權定價公式
13.6估計波動率
13.7期權定價的風險中立法
13.7.1風險中立法背後的邏輯
13.7.2風險中立定價的示例
13.7.3證明美式買入期權決不應及早執行
13.8用Black?Scholes公式評估Internet啟動項目和Web TV
13.8.1評估Internet啟動項目
13.8.2評估「創新期權」: Web TV
13.9二項式模型和對數正態模型之間的關系
13.10使用二項樹給美式期權定價
13.10.1股票價格樹
13.10.2最優決策策略
13.10.3使用條件格式化描述最優執行策略
13.10.4靈敏度分析
13.10.5與放棄期權的關系
13.10.6計算及早執行邊界
13.10.7應當何時放棄
13.11通過模擬給歐式賣出和買入期權定價
13.12使用模擬評估實際期權
第14章 投資組合風險、優化和規避風險
14.1風險價值度量
14.2投資組合優化: Markowitz法
14.2.1隨機變數的和: 均值和方差
14.2.2矩陣乘法和投資組合優化
14.3使用情境法優化投資組合
14.3.1自舉未來的年度利潤
14.3.2使投資組合的標准差風險最小化
14.3.3使損失的概率最小化
14.3.4使Sharpe比率最大化
14.3.5使負面風險最小化
14.3.6極小極大方法
14.3.7最大化VAR
第15章 預測模型
15.1移動平均數預測法
15.2單指數平滑法
15.3Holt法: 涉及趨勢的指數平滑法
15.4Winter法: 涉及季節性的指數平滑法
15.4.1Winter法的初始化
15.4.2預測精確度
15.5Ad Hoc預測法
15.6簡單線性回歸
15.6.1適合情況
15.6.2預測精確度
15.6.3回歸中的t檢定
15.6.4簡單線性回歸模型下面的假設條件
15.6.5用Excel運行回歸
15.6.6用Excel獲得散點圖
15.7適當表現非線性關系
15.7.1用電子表格適當表現非線性關系
15.7.2使用Excel Trend Curve
15.8多重回歸
15.8.1預計βi的值
15.8.2重新分析擬合優度
15.8.3假設檢驗
15.8.4選擇最佳的回歸方程
15.8.5多重共線性
15.8.6啞變數
15.8.7解釋啞變數的系數
15.8.8倍增模型
15.8.9多重回歸中的異方差性和自相關
15.8.10在電子表格上實現多重回歸
15.9本章小結
15.9.1移動平均數預測法
15.9.2單指數平滑法
15.9.3Holt法
15.9.4Winter法
15.9.5簡單線性回歸
15.9.6適當表現非線性關系
15.9.7多重回歸
15.10復習題
第16章 布朗運動、隨機運算和隨機控制
16.1什麼是布朗運動
16.2推導作為隨機活動極限的布朗運動
16.3隨機微分方程
16.4Ito引理
16.5使用Ito引理推導Black?Scholes期權定價模型
16.6隨機控制簡介
16.7復習題

⑤ 馬爾可夫鏈是不是數據越多,概率越越准確

馬爾科夫鏈對經濟預測和決策是通過模型來進行的。
馬爾可夫鏈,是指數學中具有馬爾可夫性質的離散事件隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當前以前的歷史狀態)對於預測將來(即當前以後的未來狀態)是無關的。
馬爾科夫鏈是一種預測工具。適宜對很多經濟現象的描述。最為典型的就是對股票市場的分析。有人利用歷史數據預測未來股票或股市走勢,發現並不具備明顯的准確性,得出的結論是股市無規律可言。
經濟學者們用建立馬爾科夫鏈模型來進行預測和決策,一般分為三步,設定狀態,計算轉移概率矩陣,計算轉移的結果。

⑥ 您好,我想問問您的一個回答的論文題目,百度知道上的問題是:(以下補充)謝謝!

摘 要 研究了滬深300指數日收益率時間序列,經檢驗其具有馬氏性,並建立了馬爾可夫鏈模型。取交易日分時數據,根據分時數據確定狀態初始概率分布,通過一步轉移概率矩陣對下一交易日的日收益率進行了預測。對該模型分析和計算,得出其為有限狀態的不可約、非周期馬爾可夫鏈,求解其平穩分布,從而得到滬深300指數日收益率概率分布。並預測了滬深300指數上漲或下跌的概率,可為投資管理提供參考。
關鍵詞 馬爾可夫鏈模型 滬深300指數 日收益率概率分布 平穩分布

1 引言
滬深300指數於2005年4月正式發布,其成份股為市場中市場代表性好,流動性高,交易活躍的主流投資股票,能夠反映市場主流投資的收益情況。眾多證券投資基金以滬深300指數為業績基準,因此對滬深300指數收益情況研究顯得尤為重要,可為投資管理提供參考。
取滬深300指數交易日收盤價計算日收益率,可按區間將日收益率分為不同的狀態,則日收益率時間序列可視為狀態的變化序列,從而可以嘗試採用馬爾可夫鏈模型進行處理。馬爾可夫鏈模型在證券市場的應用已取得了不少成果。參考文獻[1]、[2]、[3]和[4]的研究比較類似,均以上證綜合指數的日收盤價為對象,按漲、平和跌劃分狀態,取得了一定的成果。但只取了40~45個交易日的數據進行分析,歷史數據過少且狀態劃分較為粗糙。參考文獻[5]和[6]以上證綜合指數周價格為對象,考察指數在的所定義區間(狀態)的概率,然其狀態偏少(分別只有6個和5個狀態),區間跨度較大,所得結果實際參考價值有限。參考文獻[7]對單只股票按股票價格劃分狀態,也取得了一定成果。
然而收益率是證券市場研究得更多的對象。本文以滬深300指數日收益率為對考察對象進行深入研究,採用matlab7.1作為計算工具,對較多狀態和歷史數據進行了處理,得出了滬深300指數日收益率概率分布,並對日收益率的變化進行了預測。
2 馬爾可夫鏈模型方法
2.1 馬爾可夫鏈的定義
設有隨機過程{Xt,t∈T},T是離散的時間集合,即T={0,1,2,L},其相應Xt可能取值的全體組成狀態空間是離散的狀態集I={i0,i1,i2,L},若對於任意的整數t∈T和任意的i0,i1,L,it+1∈I,條件概率則稱{Xt,t∈T}為馬爾可夫鏈,簡稱馬氏鏈。馬爾可夫鏈的馬氏性的數學表達式如下:
P{Xn+1=in+1|X0=i0,X1=i1,L,Xn=in}=P{Xn+1=in+1|Xn=in} (1)
2.2 系統狀態概率矩陣估計
馬爾可夫鏈模型方法的基本內容之一是系統狀態的轉移概率矩陣估算。估算系統狀態的概率轉移矩陣一般有主觀概率法和統計估演算法兩種方法。主觀概率法一般是在缺乏歷史統計資料或資料不全的情況下使用。本文採用統計估演算法,其主要過程如下:假定系統有m種狀態S1,S2,L,Sm根據系統的狀態轉移的歷史記錄,可得到表1的統計表格。其中nij表示在考察的歷史數據范圍內系統由狀態i一步轉移到狀態j的次數,以■ij表示系統由狀態i一步轉移到狀態的轉移概率估計量,則由表1的歷史統計數據得到■ij的估計值和狀態的轉移概率矩陣P如下:
■ij=nij■nik,P=p11 K p1mM O Mpm1 L pmn(2)
2.3 馬氏性檢驗
隨機過程{Xt,t∈T}是否為馬爾可夫鏈關鍵是檢驗其馬氏性,可採用χ2統計量來檢驗。其步驟如下:(nij)m×m的第j列之和除以各行各列的總和所得到的值記為■.j,即:
■.j=■nij■■nik,且■ij=nij■nik(3)
當m較大時,統計量服從自由度為(m-1)2的χ2分布。選定置信度α,查表得χ2α((m-1)2),如果■2>χ2α((m-1)2),則可認為{Xt,t∈T}符合馬氏性,否則認為不是馬爾可夫鏈。
■2=2■■nijlog■ij■.j(4)
2.4 馬爾可夫鏈性質
定義了狀態空間和狀態的轉移概率矩陣P,也就構建了馬爾可夫鏈模型。記Pt(0)為初始概率向量,PT(n)為馬爾可夫鏈時刻的絕對概率向量,P(n)為馬爾可夫鏈的n步轉移概率矩陣,則有如下定理:
P(n)=PnPT(n)=PT(0)P(n)(5)
可對馬爾可夫鏈的狀態進行分類和狀態空間分解,從而考察該馬爾可夫鏈模型的不可約閉集、周期性和遍歷性。馬爾可夫鏈的平穩分布有定理不可約、非周期馬爾可夫鏈是正常返的充要條件是存在平穩分布;有限狀態的不可約、非周期馬爾可夫鏈必定存在平穩過程。
3 馬爾可夫鏈模型方法應用
3.1 觀測值的描述和狀態劃分
取滬深300指數從2005年1月4日~2007年4月20日共555個交易日收盤價計算日收益率(未考慮分紅),將日收益率乘以100並記為Ri,仍稱為日收益率。計算公式為:
Ri=(Pi-Pi-1)×100/Pi-1(6)
其中,Pi為日收盤價。
滬深300指數運行比較平穩,在考察的歷史數據范圍內日收益率有98.38%在[-4.5,4.5]。可將此范圍按0.5的間距分為18個區間,將小於-4.5和大於4.5各記1區間,共得到20個區間。根據日收益率所在區間劃分為各個狀態空間,即可得20個狀態(見表2)。

3.2 馬氏性檢驗
採用χ2統計量檢驗隨機過程{Xt,t∈T}是否具有馬氏性。用前述統計估演算法得到頻率矩陣(nij)20×20。
由(3)式和(4)式可得:■.j=■nij■■nik,且■ij=nij■nik,■2=2■■nijlog■ij■.j=446.96,令自由度為k=(m-1)2即k=361,取置信度α=0.01。由於k>45,χ2α(k)不能直接查表獲得,當k充分大時,有:
χ2α(k)≈■(zα+■)2(7)
其中,zα是標准正態分布的上α分位點。查表得z0.01=2.325,故可由(1)、(7)式得,即統計量,隨機過程{Xt,t∈T}符合馬氏性,所得模型是馬爾可夫鏈模型。
3.3 計算轉移概率矩陣及狀態一步轉移
由頻率矩陣(nij)20×20和(1)、(2)式得轉移概率矩陣為P=(Pij)20×20。考察2007年4月20日分時交易數據(9:30~15:30共241個數據),按前述狀態劃分方法將分時交易數據收益率歸於各狀態,並記Ci為屬於狀態i的個數,初始概率向量PT(0)=(p1,p2,L,pt,L,p20),則:
pj=Cj/241,j=1,2,K,20(8)
下一交易日日收益率分布概率PT(0)={p1(1),p2(1),L,pi(1),L,p20(1)},且有PT(1)-PT(0)p,計算結果如表3所示。

3.4 馬爾可夫鏈遍歷性和平穩分布
可以分析該馬爾可夫鏈的不可約集和周期性,從而進一步考察其平穩分布,然而其分析和求解非常復雜。本文使用matlab7.1採用如下演算法進行求解:將一步轉移概率矩陣P做乘冪運算,當時Pn+1=Pn停止,若n>5 000亦停止運算,返回Pn和n。計算發現當n=48時達到穩定,即有P(∞)=P(48)=P48。考察矩陣P(48)易知:各行數據都相等,不存在數值為0的行和列,且任意一行的行和為1。故該馬爾可夫鏈{Xt,t∈T}只有一個不可約集,具有遍歷性,且存在平穩分布{πj,j∈I},平穩分布為P(48)任意一行。從以上計算和分析亦可知該馬爾可夫鏈是不可約、非周期的馬爾可夫鏈,存在平穩分布。計算所得平穩分布如表4所示。
3.5 計算結果分析
表3、表4給出了由當日收益率統計出的初始概率向量PT(0),狀態一步預測所得絕對概率向量PT(1)和日收益率平穩分布,由表3和表4綜合可得圖1。可以看出,雖然當日(2007年4月20日)收益率在區間(1.5,4.5)波動且在(2.5,4.5)內的概率達到了0.7261,表明在2007年4月20日,日收益率較高(實際收盤時,日收益率為4.41),但其下一交易日和從長遠來看其日收益率概率分布依然可能在每個區間。這是顯然的,因為日收益率是隨機波動的。
對下一交易日收益率預測(PT(1)),發現在下一交易日收益率小於0的概率為0.4729,大於0的概率為0.5271,即下一交易日收益率大於0的概率相對較高,其中在區間(-2,-1.5)、(0.5,1)和(1,1.5)概率0.2675、0.161和0.1091依次排前三位,也說明下一交易日收益率在(-2,-1.5)的概率會比較高,有一定的風險。
從日收益率長遠情況(平穩分布)來看,其分布類似正態分布但有正的偏度,說明其極具投資潛力。日收益率小於0的概率為0.4107,大於0的概率為0.5893,即日收益率大於0的概率相當的高於其小於0的概率。
4 結語
採用馬爾可夫鏈模型方法可以依據某一交易日收益率情況向對下一交易日進行預測,也可得到從長遠來看其日收益率的概率分布,定量描述了日收益率。通過對滬深300指數日收益率分析和計算,求得滬深300指數日收益率的概率分布,發現滬深300指數日收益率大於0的概率相對較大(從長遠看,達到了0.5893,若考慮分紅此概率還會變大),長期看來滬深300指數表現樂觀。若以滬深300指數構建指數基金再加以調整,可望獲得較好的回報。
筆者亦採用范圍(-5,5)、狀態區間間距為1和范圍(-6,6)、狀態區間間距為2進行運算,其所得結果類似。當採用更大的范圍(如-10,10等)和不同的區間大小進行運算,計算發現若狀態劃分過多,所得模型不易通過馬氏性檢驗,如何更合理的劃分狀態使得到的結果更精確是下一步的研究之一。在後續的工作中,採用ANN考察所得的日收益率預測和實際日收益率的關系也是重要的研究內容。馬爾可夫鏈模型方法也可對上證指數和深證成指數進行類似分析。
參考文獻
1 關麗娟,趙鳴.滬綜指走勢的馬爾可夫鏈模型預測[J].山東行政學院,山東省經濟管理幹部學院學報,2005(4)
2 陳奕余.基於馬爾可夫鏈模型的我國股票指數研究[J].商場現代化(學術研討),2005(2)
3 肖澤磊,盧悉早.基於馬爾可夫鏈系統的上證指數探討[J].科技創業月刊,2005(9)
4 邊廷亮,張潔.運用馬爾可夫鏈模型預測滬綜合指數[J].統計與決策,2004(6)
5 侯永建,周浩.證券市場的隨機過程方法預測[J].商業研究,2003(2)
6 王新蕾.股指馬氏性的檢驗和預測[J].統計與決策,2005(8)
7 張宇山,廖芹.馬爾可夫鏈在股市分析中的若干應用[J].華南理工大學學報(自然科學版),2003(7)
8 馮文權.經濟預測與決策技術[M].武漢:武漢大學出版社,2002
9 劉次華.隨機過程[M].武漢:華中科技大學出版社,2001
10 盛千聚.概率論與數理統計[M].北京:高等教育出版社.1989轉

⑦ 馬爾可夫鏈對股市的分析

你好!
他說:世界金融危機還要持續一年。我看好中國股市,中國平均業績增長百分之1.5.世界要靠中國來帶動!
希望對你有所幫助,望採納。

⑧ 馬爾可夫鏈運用在股票指數模型中的局限性

你最好寫一下你是幹啥用的,否則我覺得推薦點書就可以了,都寫出來。。。也太。。。