當前位置:首頁 » 價格知識 » 有紅利的股票指數看跌期權價格
擴展閱讀
股票交易賬號幾位數 2025-06-18 17:45:01
溢鑫科創科技股票代碼 2025-06-18 16:48:41
中國廣州中葯股票行情 2025-06-18 16:39:30

有紅利的股票指數看跌期權價格

發布時間: 2021-07-07 21:04:02

㈠ 考慮一個不付紅利的股票的美式看漲期權

考慮一個不負紅利的股票都沒事,看著齊全,考慮一個步步紅利的股票都沒事,看著你。七天一個不負紅利的股票的沒事,看著幾千正在考慮中考慮一個不負紅綠燈。股票沒事,開門。

㈡ 為什麼紅利會降低看漲期權的價值

很簡單,股票價值是未來所有預計現金流的當前價值總和,紅利無非是將其中一部分以當前價值兌現,結果是降低股票價格(在無損耗的市場和合理的投資者環境下,基本是1比1的關系,現實中這個比例一般小寫,因為稅收,投資心理和成熟程度等因素)。比如10塊的股票分了1塊紅利,價格自然就降到9塊。

看漲期權的價值分內在價值和時間價值。內在價值等於股票價格減去期權的兌現價值,分紅帶來的這部分價值降低是很明確的;時間價值是你們問這個問題的一般投資者不具備充足的數學和金融理解力因而難以明白的復雜問題,但在這里我可以明確地告訴你們,這部分的價值也會改變,但不足以抵消內在價值的改變幅度。

綜上所述,問題解答完畢。

(不用評分了,因為你們不會看到比這更准確地答案)
(另,所用術語可能和中文標准不同,見諒,但意思因該是表達清楚了)

MAESTRO IN THE MAKING

㈢ 日經指數看跌期權是什麼

日經指數:日本的股票指數之一,如N225
日經指數期貨:以日經指數為標的物的期貨合約
看跌期權:代表一種可以在今後的某一個時間點或者某幾個時間點或者一段時間內,期權的購買者擁有在期權合約有效期內按執行價格賣出一定數量標的物的權利,但不負擔必須賣出的義務.
日經指數看跌期權就是表明一種以日經指數期貨合約為標的的看跌期權.

㈣ 為什麼期權有效期內預期紅利發放,會降低股價

由於發放紅利,會導致經濟利益流出企業,那麼每股股票享有的經濟利益就變少,所以發放紅利會降低股價,這里可以理解為股票的價值。但現實中,發放紅利可能並不會導致股價降低,那是因為股價還受一大堆其他因素影響。

㈤ 對於以股票為標的的不受紅利保護的歐式看漲期權而言,下面哪種情況不一定會降該期權的價格( )

c
股票價格的波動率減小

㈥ 股票指數期權的定價公式

期權定價問題(Options Pricing)一直是理論界與實務界較為關注的熱點問題,同時也是開展期權交易所遇到的最為實際的關鍵問題。期權價格是期權合約中惟一的可變數,它通常由內涵價值與時間價值兩部分構成。而決定期權價格的主要因素包括以下幾方面:(1)履約價格的高低;(2)期權合約的有效期;(3 )期權標的物市場的趨勢;(4)標的物價格波動幅度;(5)利率的變化。股票指數期權價格的確定也是如此。
根據布萊克·修斯的期權定價模型, 可以分別得到歐式看漲股票指數期權和看跌股票指數期權的定價公式為:
c=se-q(T-t)N(d1)-xe-r(T-t)N(d2);
P=xe-r(T-t)N(-d2)N-se-q(T-t)N(-d1)。
其中 ln(SX)+(r-q+σ2/2)(T-t) ┌──
d1=───────────── ,d2=d1-σ│T-T
┌──
σ│T-t
S為股票指數期權的現貨價格,X為執行價格,T為到期日,r為無風險年利率,q為年股息率,σ為指數的年變化率即風險。
例如,以期限為兩個月的標准普爾500指數的歐式看漲期權,假定現行指數價格為310,期權的協議價格為300,無風險年利率為8%,指數的變化率年平均為20 %,預計第一個月和第二個月的指數平均股息率分別為0.2%和0.3%。將這些條件,即S=310,X=300,r=0.08,σ=0.2,T-T=0.1667,q=0.5%×6=0.03,代入以上的歐式看漲股票指數期權定價公式,可以得到d1=0.5444,d2=0.4628,N(d1)= 0.7069,N(d2)=0.6782,則C=17.28,即一份股票指數期權合約的成本為17.28 美元。

㈦ 如何使用matlab計算期權價格

參考論文
期權定價理論是現代金融學中最為重要的理論之一,也是衍生金融工具定價中最復雜的。本文給出了歐式期權定價過程的一個簡單推導,並利用Matlab對定價公式給出了數值算例及比較靜態分析,以使讀者能更直觀地理解期權定價理論。
關鍵詞:Matlab;教學實踐
基金項目:國家自然科學基金項目(70971037);教育部人文社科青年項目(12YJCZH128)
中圖分類號:F83文獻標識碼:A
收錄日期:2012年4月17日
現代金融學與傳統金融學最主要的區別在於其研究由定性分析向定量分析的轉變。數理金融學即可認為是現代金融學定量分析分支中最具代表性的一門學科。定量分析必然離不開相應計算軟體的應用,Matlab就是一款最為流行的數值計算軟體,它將高性能的數值計算和數據圖形可視化集成在一起,並提供了大量內置函數,近年來得到了廣泛的應用,也為金融定量分析提供了強有力的數學工具。
一、Black-Scholes-Merton期權定價模型
本節先給出B-S-M期權定價模型的簡單推導,下節給出B-S-M期權定價模型的Matlab的實現。設股票在時刻t的價格過程S(t)遵循如下的幾何Brown運動:
dS(t)=mS(t)dt+sS(t)dW(t)(1)
無風險資產價格R(t)服從如下方程:
dR(t)=rR(t)dt(2)
其中,r,m,s>0為常量,m為股票的期望回報率,s為股票價格波動率,r為無風險資產收益率且有0<r<m;dW(t)是標准Brown運動。由式(1)可得:
lnS(T):F[lnS(t)+(m-s2/2)(T-t),s■](3)
歐式看漲期權是一種合約,它給予合約持有者以預定的價格(敲定價格)在未來某個確定的時間T(到期日)購買一種資產(標的資產)的權力。在風險中性世界裡,標的資產為由式(1)所刻畫股票,不付紅利的歐式看漲期權到期日的期望價值為:■[max(S(T)-X,0)],其中■表示風險中性條件下的期望值。根據風險中性定價原理,不付紅利歐式看漲期權價格c等於將此期望值按無風險利率進行貼現後的現值,即:
c=e-r(T-1)■[max{S(T)-X,0}](4)
在風險中性世界裡,任何資產將只能獲得無風險收益率。因此,lnS(T)的分布只要將m換成r即可:
lnS(T):F[lnS(t)+(r-s2/2)(T-t),s■](5)
由式(3)-(4)可得歐式看漲期權價格:
c=S(t)N(d1)-Xe-r(T-1)N(d2)(6)
這里:
d1=■(7)
d2=■=d1-s■(8)
N(x)為均值為0標准差為1的標准正態分布變數的累積概率分布函數。S(t)為t時刻股票的價格,X為敲定價格,r為無風險利率,T為到期時間。歐式看跌期權也是一種合約,它給予期權持有者以敲定價格X,在到期日賣出標的股票的權力。
下面推導歐式看漲期權c與歐式看跌期權p的聯系。考慮兩個組合,組合1包括一個看漲期權加上Xe-r(T-1)資金,組合2包含一個看跌期權加上一股股票。於是,在到期時兩個組合的價值必然都是:
max{X,S(T)}(9)
歐式期權在到期日之前是不允許提前執行的,所以當前兩個組合的價值也必相等,於是可得歐式看漲期權與看跌期權之間的平價關系(put-call parity):
c+Xe-r(T-t)=p+S(t)(10)
由式(10)可得,不付紅利歐式看跌期權的價格為:
p=Xe-r(T-t)N(-d2)-S(t)N(-d1)(11)
二、Black-Scholes-Merton模型的Matlab實現
1、歐式期權價格的計算。由式(6)可知,若各參數具體數值都已知,計算不付紅利的歐式看漲期權的價格一般可以分為三個步驟:先算出d1,d2,涉及對數函數;其次計算N(d1),N(d2),需要查正態分布表;最後再代入式(6)及式(11)即可得歐式期權價格,涉及指數函數。不過,歐式期權價格的計算可利用Matlab中專有blsprice函數實現,顯然更為簡單:
[call,put]=blsprice(Price,Strike,Rate,Time,Volatility)(12)
只需要將各參數值直接輸入即可,下面給出一個算例:設股票t時刻的價格S(t)=20元,敲定價格X=25,無風險利率r=3%,股票的波動率s=10%,到期期限為T-t=1年,則不付紅利的歐式看漲及看跌期權價格計算的Matlab實現過程為:
輸入命令為:[call,put]= blsprice(20,25,0.03,0.1,1)
輸出結果為:call=1.0083put=5.9334
即購買一份標的股票價格過程滿足式(1)的不付紅利的歐式看漲和看跌期權價格分別為1.0083元和5.9334元。
2、歐式期權價格的比較靜態分析。也許純粹計算歐式期權價格還可以不利用Matlab軟體,不過在授課中,教師要講解期權價格隨個參數的變化規律,只看定價公式無法給學生一個直觀的感受,此時可利用Matlab數值計算功能及作圖功能就能很方便地展示出期權價格的變動規律。下面筆者基於Matlab展示歐式看漲期權價格隨各參數變動規律:
(1)看漲期權價格股票價格變化規律
輸入命令:s=(10∶1∶40);x=25;r=0.03;t=1;v=0.1;
c=blsprice(s,x,r,t,v);
plot(s,c,'r-.')
title('圖1看漲期權價格股票價格變化規律');
xlabel('股票價格');ylabel('期權價值');grid on
(2)看漲期權價格隨時間變化規律
輸入命令:s=20;x=25;r=0.03;t=(0.1∶0.1∶2);v=0.1;c=blsprice(s,x,r,t,v);
plot(t,c,'r-.')
title('圖2看漲期權價格隨時間變化規律');
xlabel('到期時間');ylabel('期權價值');grid on
(3)看漲期權價格隨無風險利率變化規律
s=20;x=25;r=(0.01∶0.01∶0.5);t=1;v=0.1;c=blsprice(s,x,r,t,v);
plot(r,c,'r-.')
title('圖3看漲期權價格隨無風險利率變化規律');
xlabel('無風險利率');ylabel('期權價值');grid on
(4)看漲期權價格隨波動率變化規律
s=20;x=25;r=0.03;t=1;v=(0.1∶0.1∶1);c=blsprice(s,x,r,t,v);
plot(v,c,'r-.')
title('圖4看漲期權價格隨波動率變化規律');
xlabel('波動率');ylabel('期權價值');grid on
(作者單位:南京審計學院數學與統計學院)

主要參考文獻:
[1]羅琰,楊招軍,張維.非完備市場歐式期權無差別定價研究[J].湖南大學學報(自科版),2011.9.
[2]羅琰,覃展輝.隨機收益流的效用無差別定價[J].重慶工商大學學報(自科版),2011.
[3]鄧留寶,李柏年,楊桂元.Matlab與金融模型分析[M].合肥工業大學出版社,2007.

㈧ 個股期權價格變動的影響因素

1.合約標的當前價格:在其他變數相同的情況下,合約標的價格上漲,則認購期權價格上漲,而認沽期權價格下跌;合約標的價格下跌,則認購期權價格下跌,而認沽期權價格上漲
2.個股期權的行權價:對於認購期權,行權價越高,期權價格就越低;對於認沽期權,行權價越高,期權價格就越高
3.個股期權的到期剩餘時間:對於期權來說,時間就等同於獲利的機會。在其他變數相同的情況下,到期剩餘時間越長的期權對於期權買方的價值就越高,對期權賣方的風險就越大,所以它們的價格也應該更高
4.當前的無風險利率:在其他變數相同的情況下,利率越高,認購期權的價格就越高,認沽期權的價格就越低;利率越低,認購期權的價格就越低,認沽期權的價格就越高。利率的變化對期權價格影響的大小,與期權到期剩餘時間的長短正相關
5.合約標的的預期波動率:波動率是衡量證券價格變化劇烈程度的指標。在其他變數相同的情況下,合約標的波動率較高的個股期權具有更高的價格
6.分紅率:如果標的股票發生分紅時不對行權價格做相應調整,那麼標的股票分紅會導致期權價格的變化。具體來說,標的股票分紅的增加會導致認購期權的價格下降,而認沽期權的價格上升;標的股票分紅的減少會導致認購期權的價格提高,而認沽期權的價格下降。另外,期權的到期剩餘時間越長,或預期分紅的數目越大、次數越多,分紅對其價格的影響就越大

㈨ 考慮同一種股票的期貨合約,看漲期權和看跌期權交易,若X=T,如何證明看漲期權價格等於看跌期權價格呢

看漲期權與看跌期權之間的平價關系

(一)歐式看漲期權與看跌期權之間的平價關系
1.無收益資產的歐式期權
在標的資產沒有收益的情況下,為了推導c和p之間的關系,我們考慮如下兩個組合:
組合A:一份歐式看漲期權加上金額為Xe-r(T-t) 的現金
組合B:一份有效期和協議價格與看漲期權相同的歐式看跌期權加上一單位標的資產
在期權到期時,兩個組合的價值均為max(ST,X)。由於歐式期權不能提前執行,因此兩組合在時刻t必須具有相等的價值,即:
c+Xe-r(T-t)=p+S(1.1)

這就是無收益資產歐式看漲期權與看跌期權之間的平價關系(Parity)。它表明歐式看漲期權的價值可根據相同協議價格和到期日的歐式看跌期權的價值推導出來,反之亦然。
如果式(1.1)不成立,則存在無風險套利機會。套利活動將最終促使式(1.1)成立。
2.有收益資產歐式期權
在標的資產有收益的情況下,我們只要把前面的組合A中的現金改為D+Xe-r(T-t) ,我們就可推導有收益資產歐式看漲期權和看跌期權的平價關系:
c+D+Xe-r(T-t)=p+S(1.2)

(二)美式看漲期權和看跌期權之間的關系
1.無收益資產美式期權。
由於P>p,從式(1.1)中我們可得:
P>c+Xe-r(T-t)-S
對於無收益資產看漲期權來說,由於c=C,因此:
P>C+Xe-r(T-t)-S
C-P<S-Xe-r(T-t)(1.3)

為了推導出C和P的更嚴密的關系,我們考慮以下兩個組合:
組合A:一份歐式看漲期權加上金額為X的現金
組合B:一份美式看跌期權加上一單位標的資產
如果美式期權沒有提前執行,則在T時刻組合B的價值為max(ST,X),而此時組合A的價值為max(ST,X)+ Xe-r(T-t)-X 。因此組合A的價值大於組合B。
如果美式期權在T-t 時刻提前執行,則在T-t 時刻,組合B的價值為X,而此時組合A的價值大於等於Xe-r(T-t) 。因此組合A的價值也大於組合B。
這就是說,無論美式組合是否提前執行,組合A的價值都高於組合B,因此在t時刻,組合A的價值也應高於組合B,即:
c+X>P+S

由於c=C,因此,
C+X>P+S
結合式(1.3),我們可得:

S-X<C-P<S-Xe-r(T-t)(1.4)

由於美式期權可能提前執行,因此我們得不到美式看漲期權和看跌期權的精確平價關系,但我們可以得出結論:無收益美式期權必須符合式(1.4)的不等式。
2.有收益資產美式期權
同樣,我們只要把組合A的現金改為D+X,就可得到有收益資產美式期權必須遵守的不等式:
S-D-X<C-P<S-D-Xe-r(T-t) (1.5)