當前位置:首頁 » 價格知識 » 時間序列預測股票價格方法
擴展閱讀
股票代碼xd代表什意思 2025-09-16 01:55:34
股票交易用哪個證券 2025-09-15 23:59:24
中國船舶股票可以買嗎 2025-09-15 22:22:28

時間序列預測股票價格方法

發布時間: 2021-10-07 00:47:19

① 時間序列預測法的步驟有哪些

時間序列預測法的有以下幾個步驟。

第一步,收集歷史資料,加以整理,編成時間序列,並根據時間序列繪成統計圖。時間序列分析通常是把各種可能發生作用的因素進行分類,傳統的分類方法是按各種因素的特點或影響效果進行分類:

①長期趨勢;

②季節變動;

③循環變動;

④不規則變動。

第二步,分析時間序列。

時間序列中的每一時期的數值都是由許許多多不同的因素同時發生作用後的綜合結果。

第三步,求時間序列的長期趨勢(T)、季節變動(S)和不規則變動(I)的值,並選定近似的數學模式來代表它們。對於數學模式中的諸未知參數,使用合適的技術方法求出其值。

第四步,利用時間序列資料求出長期趨勢、季節變動和不規則變動的數學模型後,就可以利用它來預測未來的長期趨勢值T和季節變動值S,在可能的情況下預測不規則變動值I。然後用以下模式計算出未來的時間序列的預測值Y。

加法模式:T+S+I=Y乘法模式:T乘以S乘以I=Y

如果不規則變動的預測值難以求得,就只求長期趨勢和季節變動的預測值,以兩者相乘之積或相加之和為時間序列的預測值。如果經濟現象本身沒有季節變動或不需預測分季分月的資料,則長期趨勢的預測值就是時間序列的預測值,即T=Y。但要注意這個預測值只反映現象未來的發展趨勢,即使很准確的趨勢線在按時間順序的觀察方面所起的作用本質上也只是一個平均數的作用,實際值將圍繞著它上下波動。

② 基於時間序列分析的股票價格優勢趨勢預測的sas的程序

如果你指的是momentum,即動量交易的話,這個是一個搞金融學asset pricing常用的方法,你可以去找這方面的文獻,有告訴你怎麼編程思路的。我們有這樣的程序,但是除非是研究合作,不可能共享出來的。

③ 非平穩時間序列可以預測股票走勢嗎

一般把非平穩時間序列轉化為平穩時間序列的方法是取n階差分法。

比如舉個例子,假設xt本身是不平穩的時間序列,如果xt~I(1) ,也就是說x的1階差分是平穩序列。
那麼 xt的1階差分dxt=x(t)-x(t-1) 就是平穩的序列 這時dt=x(t-1)

如果xt~I(2),就是說xt的2階差分是平穩序列的話
xt的1n階差分dxt=x(t)-x(t-1) 這時xt的1階差分依然不平穩,
那麼 對xt的1階差分再次差分後,
xt的2階差分ddxt=dxt-dxt(t-1)便是平穩序列 這時dt=-x(t-1)-dxt(t-1)

n階的話可以依次類推一下。

④ 基於時間序列分析的股票價格短期預測,這個開題報告怎麼弄,收費的就不用麻煩了

你好,希望我們可以幫你。相關資料在知網,萬維網能查到資料。基於時間序列分析的股票價格短期預測開題報告是我們特長,我們的服務特色:支持支付寶交易,保證你的資金安全。3種服務方式,文章多重審核,保證文章質量。附送抄襲檢測報告,讓你用得放心。修改不限次數,再刁難的老師也能過。

⑤ 一支簡單的股票價格預測的數學模型!!!!

對於股票價格只能是在理論上,換句話說是在你自己的期望預期。
而對於股票價格預測一般是從他的基本面上來考慮。
你可以試試下面的方法:
杜邦財務分析法及案例分析
摘要:杜邦分析法是一種財務比率分解的方法,能有效反映影響企業獲利能力的各指標間的相互聯系,對企業的財務狀況和經營成果做出合理的分析。
關鍵詞:杜邦分析法;獲利能力;財務狀況
獲利能力是企業的一項重要的財務指標,對所有者、債權人、投資者及政府來說,分析評價企業的獲利能力對其決策都是至關重要的,獲利能力分析也是財務管理人員所進行的企業財務分析的重要組成部分。
傳統的評價企業獲利能力的比率主要有:資產報酬率,邊際利潤率(或凈利潤率),所有者權益報酬率等;對股份制企業還有每股利潤,市盈率,股利發放率,股利報酬率等。這些單個指標分別用來衡量影響和決定企業獲利能力的不同因素,包括銷售業績,資產管理水平,成本控制水平等。
這些指標從某一特定的角度對企業的財務狀況以及經營成果進行分析,它們都不足以全面地評價企業的總體財務狀況以及經營成果。為了彌補這一不足,就必須有一種方法,它能夠進行相互關聯的分析,將有關的指標和報表結合起來,採用適當的標准進行綜合性的分析評價,既全面體現企業整體財務狀況,又指出指標與指標之間和指標與報表之間的內在聯系,杜邦分析法就是其中的一種。
杜邦財務分析體系(TheDuPontSystem)是一種比較實用的財務比率分析體系。這種分析方法首先由美國杜邦公司的經理創造出來,故稱之為杜邦財務分析體系。這種財務分析方法從評價企業績效最具綜合性和代表性的指標-權益凈利率出發,層層分解至企業最基本生產要素的使用,成本與費用的構成和企業風險,從而滿足通過財務分析進行績效評價的需要,在經營目標發生異動時經營者能及時查明原因並加以修正,同時為投資者、債權人及政府評價企業提供依據。
一、杜邦分析法和杜邦分析圖
杜邦模型最顯著的特點是將若干個用以評價企業經營效率和財務狀況的比率按其內在聯系有機地結合起來,形成一個完整的指標體系,並最終通過權益收益率來綜合反映。採用這一方法,可使財務比率分析的層次更清晰、條理更突出,為報表分析者全面仔細地了解企業的經營和盈利狀況提供方便。
杜邦分析法有助於企業管理層更加清晰地看到權益資本收益率的決定因素,以及銷售凈利潤率與總資產周轉率、債務比率之間的相互關聯關系,給管理層提供了一張明晰的考察公司資產管理效率和是否最大化股東投資回報的路線圖。
杜邦分析法利用各個主要財務比率之間的內在聯系,建立財務比率分析的綜合模型,來綜合地分析和評價企業財務狀況和經營業績的方法。採用杜邦分析圖將有關分析指標按內在聯系加以排列,從而直觀地反映出企業的財務狀況和經營成果的總體面貌。
杜邦財務分析體系如圖所示:

二、對杜邦圖的分析
1.圖中各財務指標之間的關系:
可以看出杜邦分析法實際上從兩個角度來分析財務,一是進行了內部管理因素分析,二是進行了資本結構和風險分析。
權益凈利率=資產凈利率×權益乘數
權益乘數=1÷(1-資產負債率)
資產凈利率=銷售凈利率×總資產周轉率
銷售凈利率=凈利潤÷銷售收入
總資產周轉率=銷售收入÷總資產
資產負債率=負債總額÷總資產
2.杜邦分析圖提供了下列主要的財務指標關系的信息:
(1)權益凈利率是一個綜合性最強的財務比率,是杜邦分析系統的核心。它反映所有者投入資本的獲利能力,同時反映企業籌資、投資、資產運營等活動的效率,它的高低取決於總資產利潤率和權益總資產率的水平。決定權益凈利率高低的因素有三個方面--權益乘數、銷售凈利率和總資產周轉率。權益乘數、銷售凈利率和總資產周轉率三個比率分別反映了企業的負債比率、盈利能力比率和資產管理比率。
(2)權益乘數主要受資產負債率影響。負債比率越大,權益乘數越高,說明企業有較高的負債程度,給企業帶來較多地杠桿利益,同時也給企業帶來了較多地風險。資產凈利率是一個綜合性的指標,同時受到銷售凈利率和資產周轉率的影響。
(3)資產凈利率也是一個重要的財務比率,綜合性也較強。它是銷售凈利率和總資產周轉率的乘積,因此,要進一步從銷售成果和資產營運兩方面來分析。
銷售凈利率反映了企業利潤總額與銷售收入的關系,從這個意義上看提高銷售凈利率是提高企業盈利能力的關鍵所在。要想提高銷售凈利率:一是要擴大銷售收入;二是降低成本費用。而降低各項成本費用開支是企業財務管理的一項重要內容。通過各項成本費用開支的列示,有利於企業進行成本費用的結構分析,加強成本控制,以便為尋求降低成本費用的途徑提供依據。
企業資產的營運能力,既關繫到企業的獲利能力,又關繫到企業的償債能力。一般而言,流動資產直接體現企業的償債能力和變現能力;非流動資產體現企業的經營規模和發展潛力。兩者之間應有一個合理的結構比率,如果企業持有的現金超過業務需要,就可能影響企業的獲利能力;如果企業佔用過多的存貨和應收賬款,則既要影響獲利能力,又要影響償債能力。為此,就要進一步分析各項資產的佔用數額和周轉速度。對流動資產應重點分析存貨是否有積壓現象、貨幣資金是否閑置、應收賬款中分析客戶的付款能力和有無壞賬的可能;對非流動資產應重點分析企業固定資產是否得到充分的利用。
三、利用杜邦分析法作實例分析
杜邦財務分析法可以解釋指標變動的原因和變動趨勢,以及為採取措施指明方向。下面以一家上市公司北汽福田汽車(600166)為例,說明杜邦分析法的運用。
福田汽車的基本財務數據如下表:

(一)對權益凈利率的分析
權益凈利率指標是衡量企業利用資產獲取利潤能力的指標。權益凈利率充分考慮了籌資方式對企業獲利能力的影響,因此它所反映的獲利能力是企業經營能力、財務決策和籌資方式等多種因素綜合作用的結果。
該公司的權益凈利率在2001年至2002年間出現了一定程度的好轉,分別從2001年的0.097增加至2002年的0.112.企業的投資者在很大程度上依據這個指標來判斷是否投資或是否轉讓股份,考察經營者業績和決定股利分配政策。這些指標對公司的管理者也至關重要。
公司經理們為改善財務決策而進行財務分析,他們可以將權益凈利率分解為權益乘數和資產凈利率,以找到問題產生的原因。
表三:權益凈利率分析表

福田汽車權益凈利率=權益乘數×資產凈利率
2001年0.097=3.049×0.032
2002年0.112=2.874×0.039
通過分解可以明顯地看出,該公司權益凈利率的變動在於資本結構(權益乘數)變動和資產利用效果(資產凈利率)變動兩方面共同作用的結果。而該公司的資產凈利率太低,顯示出很差的資產利用效果。
(二)分解分析過程:
權益凈利率=資產凈利率×權益乘數
2001年0.097=0.032×3.049
2002年0.112=0.039×2.874
經過分解表明,權益凈利率的改變是由於資本結構的改變(權益乘數下降),同時資產利用和成本控制出現變動(資產凈利率也有改變)。那麼,我們繼續對資產凈利率進行分解:
資產凈利率=銷售凈利率×總資產周轉率
2001年0.032=0.025×1.34
2002年0.039=0.017×2.29
通過分解可以看出2002年的總資產周轉率有所提高,說明資產的利用得到了比較好的控制,顯示出比前一年較好的效果,表明該公司利用其總資產產生銷售收入的效率在增加。總資產周轉率提高的同時銷售凈利率的減少阻礙了資產凈利率的增加,我們接著對銷售凈利率進行分解:
銷售凈利率=凈利潤÷銷售收入
2001年0.025=10284.04÷411224.01
2002年0.017=12653.92÷757613.81
該公司2002年大幅度提高了銷售收入,但是凈利潤的提高幅度卻很小,分析其原因是成本費用增多,從表一可知:全部成本從2001年403967.43萬元增加到2002年736747.24萬元,與銷售收入的增加幅度大致相當。下面是對全部成本進行的分解:
全部成本=製造成本+銷售費用+管理費用+財務費用
2001年403967.43=373534.53+10203.05+18667.77+1562.08
2002年736747.24=684559.91+21740.962+25718.20+5026.17通過分解可以看出杜邦分析法有效的解釋了指標變動的原因和趨勢,為採取應對措施指明了方向。
在本例中,導致權益利潤率小的主原因是全部成本過大。也正是因為全部成本的大幅度提高導致了凈利潤提高幅度不大,而銷售收入大幅度增加,就引起了銷售凈利率的減少,顯示出該公司銷售盈利能力的降低。資產凈利率的提高當歸功於總資產周轉率的提高,銷售凈利率的減少卻起到了阻礙的作用。
由表4可知,福田汽車下降的權益乘數,說明他們的資本結構在2001至2002年發生了變動2002年的權益乘數較2001年有所減小。權益乘數越小,企業負債程度越低,償還債務能力越強,財務風險程度越低。這個指標同時也反映了財務杠桿對利潤水平的影響。財務杠桿具有正反兩方面的作用。在收益較好的年度,它可以使股東獲得的潛在報酬增加,但股東要承擔因負債增加而引起的風險;在收益不好的年度,則可能使股東潛在的報酬下降。該公司的權益乘數一直處於2~5之間,也即負債率在50%~80%之間,屬於激進戰略型企業。管理者應該准確把握公司所處的環境,准確預測利潤,合理控制負債帶來的風險。
因此,對於福田汽車,當前最為重要的就是要努力減少各項成本,在控製成本上下力氣。同時要保持自己高的總資產周轉率。這樣,可以使銷售利潤率得到提高,進而使資產凈利率有大的提高。
四、結論
綜上所述,杜邦分析法以權益凈利率為主線,將企業在某一時期的銷售成果以及資產營運狀況全面聯系在一起,層層分解,逐步深入,構成一個完整的分析體系。它能較好的幫助管理者發現企業財務和經營管理中存在的問題,能夠為改善企業經營管理提供十分有價值的信息,因而得到普遍的認同並在實際工作中得到廣泛的應用。
但是杜邦分析法畢竟是財務分析方法的一種,作為一種綜合分析方法,並不排斥其他財務分析方法。相反與其他分析方法結合,不僅可以彌補自身的缺陷和不足,而且也彌補了其他方法的缺點,使得分析結果更完整、更科學。比如以杜邦分析為基礎,結合專項分析,進行一些後續分析對有關問題作更深更細致分析了解;也可結合比較分析法和趨勢分析法,將不同時期的杜邦分析結果進行對比趨勢化,從而形成動態分析,找出財務變化的規律,為預測、決策提供依據;或者與一些企業財務風險分析方法結合,進行必要的風險分析,也為管理者提供依據,所以這種結合,實質也是杜邦分析自身發展的需要。分析者在應用時,應注意這一點。

⑥ 怎麼看待用時間序列來預測某支股票走勢

莊家分析方法:莊家炒股票也要獲利。同樣是買、賣的差價獲利。與散戶不同的是,他可以控制股票的走勢和價格,也就是說散戶獲利是靠期待股價上漲,而莊家則是自己拉動股價上漲。 所以,莊家炒作包括四部分:建倉、拉高、整理、出貨。所謂的「洗盤」,多為吃貨。一般是吃、拉、出三部曲。
莊家建倉一般要選擇股價較低時,而且希望越低越好,他恨不得砸兩個板再買。所以,「拉高吃貨」之類,以及股價已經創新高還說是吃貨,等等,千萬別信。吃貨結束之後,一般會有一個急速的拉升過程。一旦一隻股票開始大漲,它就脫離了安全區,隨時都有出貨的可能。所以我的中線推薦一律是在低位。 當莊家認為出貨時機未到時,就需要在高位進行橫盤整理,一般是打個差價,散戶容易誤認為出貨。 莊家出貨一般要做頭部,頭部的特點是成交量大,振幅大,除非趕上大盤做頭,一般個股的頭部時間都在1個月以上。
莊家分析方法是一種綜合分析方法,不能單看圖形,也要參考技術,還得注意股票的基本面和一些外圍情況

⑦ 關於時間序列的預測可以用什麼方法

1、 時間序列 取自某一個隨機過程,如果此隨機過程的隨機特徵不隨時間變化,則我們稱過程是平穩的;假如該隨機過程的隨機特徵隨時間變化,則稱過程是非平穩的。 2、 寬平穩時間序列的定義:設時間序列 ,對於任意的 , 和 ,滿足: 則稱 寬平穩。 3、Box-Jenkins方法是一種理論較為完善的統計預測方法。他們的工作為實際工作者提供了對時間序列進行分析、預測,以及對ARMA模型識別、估計和診斷的系統方法。使ARMA模型的建立有了一套完整、正規、結構化的建模方法,並且具有統計上的完善性和牢固的理論基礎。 4、ARMA模型三種基本形式:自回歸模型(AR:Auto-regressive),移動平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回歸模型AR(p):如果時間序列 滿足 其中 是獨立同分布的隨機變數序列,且滿足: , 則稱時間序列 服從p階自回歸模型。或者記為 。 平穩條件:滯後運算元多項式 的根均在單位圓外,即 的根大於1。 (2) 移動平均模型MA(q):如果時間序列 滿足 則稱時間序列 服從q階移動平均模型。或者記為 。 平穩條件:任何條件下都平穩。 (3) ARMA(p,q)模型:如果時間序列 滿足 則稱時間序列 服從(p,q)階自回歸移動平均模型。或者記為 。 特殊情況:q=0,模型即為AR(p),p=0, 模型即為MA(q)。 二、時間序列的自相關分析 1、自相關分析法是進行時間序列分析的有效方法,它簡單易行、較為直觀,根據繪制的自相關分析圖和偏自相關分析圖,我們可以初步地識別平穩序列的模型類型和模型階數。利用自相關分析法可以測定時間序列的隨機性和平穩性,以及時間序列的季節性。 2、自相關函數的定義:滯後期為k的自協方差函數為: ,則 的自相關函數為: ,其中 。當序列平穩時,自相關函數可寫為: 。 3、 樣本自相關函數為: ,其中 ,它可以說明不同時期的數據之間的相關程度,其取值范圍在-1到1之間,值越接近於1,說明時間序列的自相關程度越高。 4、 樣本的偏自相關函數: 其中, 。 5、 時間序列的隨機性,是指時間序列各項之間沒有相關關系的特徵。使用自相關分析圖判斷時間序列的隨機性,一般給出如下准則: ①若時間序列的自相關函數基本上都落入置信區間,則該時間序列具有隨機性; ②若較多自相關函數落在置信區間之外,則認為該時間序列不具有隨機性。 6、 判斷時間序列是否平穩,是一項很重要的工作。運用自相關分析圖判定時間序列平穩性的准則是:①若時間序列的自相關函數 在k>3時都落入置信區間,且逐漸趨於零,則該時間序列具有平穩性;②若時間序列的自相關函數更多地落在置信區間外面,則該時間序列就不具有平穩性。 7、 ARMA模型的自相關分析 AR(p)模型的偏自相關函數 是以p步截尾的,自相關函數拖尾。MA(q)模型的自相關函數具有q步截尾性,偏自相關函數拖尾。這兩個性質可以分別用來識別自回歸模型和移動平均模型的階數。ARMA(p,q)模型的自相關函數和偏相關函數都是拖尾的。 三、單位根檢驗和協整檢驗 1、單位根檢驗 ①利用迪基—福勒檢驗( Dickey-Fuller Test)和菲利普斯—佩榮檢驗(Philips-Perron Test),我們也可以測定時間序列的隨機性,這是在計量經濟學中非常重要的兩種單位根檢驗方法,與前者不同的事,後一個檢驗方法主要應用於一階自回歸模型的殘差不是白雜訊,而且存在自相關的情況。 ②隨機游動 如果在一個隨機過程中, 的每一次變化均來自於一個均值為零的獨立同分布,即隨機過程 滿足: , ,其中 獨立同分布,並且: , 稱這個隨機過程是隨機游動。它是一個非平穩過程。 ③單位根過程 設隨機過程 滿足: , ,其中 , 為一個平穩過程並且 ,,。 2、協整關系 如果兩個或多個非平穩的時間序列,其某個現性組合後的序列呈平穩性,這樣的時間序列間就被稱為有協整關系存在。

⑧ 時間序列預測方法有哪些分類,分別適合使用的情況是

時間序列預測方法根據對資料分析方法的不同,可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法等。

1、簡單序時平均數法只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。

2、加權序時平均數法就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。

3、簡單移動平均法適用於近期期預測。當產品需求既不快速增長也不快速下降,且不存在季節性因素時,移動平均法能有效地消除預測中的隨機波動。

4、加權移動平均法即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。

5、指數平滑法即根用於中短期經濟發展趨勢預測,所有預測方法中,指數平滑是用得最多的一種。

6、季節趨勢預測法根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。

7、市場壽命周期預測法,適用於對耐用消費品的預測。這種方法簡單、直觀、易於掌握。

(8)時間序列預測股票價格方法擴展閱讀:

時間序列預測法的特徵

1、時間序列分析法是根據過去的變化趨勢預測未來的發展,前提是假定事物的過去延續到未來。運用過去的歷史數據,通過統計分析,進一步推測未來的發展趨勢。不會發生突然的跳躍變化,是以相對小的步伐前進;過去和當前的現象,可能表明現在和將來活動的發展變化趨向。

2.時間序列數據變動存在著規律性與不規律性

時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型:趨勢性、周期性、隨機性、綜合性。

⑨ 時間序列預測法的步驟

利用時間序列資料求出長期趨勢、季節變動和不規則變動的數學模型後,就可以利用它來預測未來的長期趨勢值T和季節變動值s,在可能的情況下預測不規則變動值I。然後用以下模式計算出未來的時間序列的預測值Y:
加法模式T+S+I=Y
乘法模式T×S×I=Y
如果不規則變動的預測值難以求得,就只求長期趨勢和季節變動的預測值,以兩者相乘之積或相加之和為時間序列的預測值。如果經濟現象本身沒有季節變動或不需預測分季分月的資料,則長期趨勢的預測值就是時間序列的預測值,即T=Y。但要注意這個預測值只反映現象未來的發展趨勢,即使很准確的趨勢線在按時間順序的觀察方面所起的作用,本質上也只是一個平均數的作用,實際值將圍繞著它上下波動。

⑩ 時間序列預測方法分哪幾類,主要適用領域是哪些

所以又可看作是隨機過程統計的一個組成部分,利用時間序列分析方法,研究隨機數據序列所遵從的統計規律,可以對未來各月的雨量進行預報。經典的統計分析都假定數據序列具有獨立性,以用於解決實際問題,記錄了某地區第一個月。該方法基於隨機過程理論和數理統計學方法。例如,譜分析等),統計模型的建立與推斷,以及關於時間序列的最優預測時間序列分析是一種動態數據處理的統計方法,第二個月,而時間序列分析則側重研究數據序列的互相依賴關系、控制與濾波等內容。它包括一般統計分析(如自相關分析。後者實際上是對離散指標的隨機過程的統計分析,……,第N個月的降雨量