㈠ 如何用股息增長模型計算股票價格
全部手打——
拜託,上面的回答都太不專業了!!
所謂的過去一年內股息下降的股票,用你能理解的最簡單的說法,就是一個上市公司今年的分紅比去年少了。這就是股息下降的股票。隨便舉個例子:一個股票,去年的分紅是10送10,今年是10送8,這個就是股息下降。下降的原因么,這就是你論文分析的內容了么(給你個建議,選個派現的股票分析會比較簡單——例——去年每10股派現5元,今年每10股派現2元)。。。至於模型么,你自己搞定。你的問題就在於不知道什麼事股息下降的股票。
下面的鏈接裡面,我給你了網路中的股息含義的鏈接。仔細看看吧。上文中的「派現」么,派發現金的意思,明白了吧。
給力吧? ~哈~ 記得給分哦。
㈡ 用股利增長模型求股票理論價格
公司下一期的股利/(資本成本—持續增長率)
D1/(r-g)
㈢ 求:利用股票估價模型,計算A、B公司股票價值
股票估價與債券估價具有不同的特點。
債券有確定的未來收入現金流。這些現金流包括: 票
息收入和本金收入。無論票息收入還是本金都有確定發生
的時間和大小。因此債券的估價可以完全遵循折現現金流
法。
一般來講, 股票收入也包括兩部分: 股利收入和出售
時的售價。因此, 理論上股票估價也可以採用折現現金流
法, 即求一系列的股利和將來出售股票時售價的現值。
但是, 股利和將來出售股票時的售價都是不確定的,
也是很難估計的。因此, 股票估價很難用折現現金流法來
完成。事實上, 目前理論上還沒有一個准確估計股票價值
的模型問世。
不過, 在對股利做出一些假設的前提下, 我們仍然可
以遵循折現現金流法的思想去嘗試股票價值的估計。
本文在MATLAB 編程環境中建立了股票估價的兩階段和三階段模型, 並用具體的實例驗證了模型的正
確性和廣泛適應性; 最後, 使用兩階段模型進行了股票價值對初始股利、所要求的最低回報率、高速增長期以及股利
增長率的敏感性分析, 得出了股票價值對最低回報率和股利增長率最為敏感的結論。這些分析對投資決策具有一定
的參考價值。
具體模型參考:www.xxpie.cn
㈣ 股票價值計算公式詳細計算方法
內在價值V=股利/(R-G)其中股利是當前股息;R為資本成本=8%,當然還有些書籍顯示,R為合理的貼現率;G是股利增長率。
本年價值為: 2.5/(10%-5%) 下一年為 2.5*(1+10%)/(10%-5%)=55。
大部分的收益都以股利形式支付給股東,股東無從股價上獲得很大收益的情況下使用。根據本人理解應該屬於高配息率的大笨象公司,而不是成長型公司。因為成長型公司要求公司不斷成長,所以多數不配發股息或者極度少的股息,而是把錢再投入公司進行再投資,而不是以股息發送。
您可登錄會計學堂官網,免費領取10G會計學習資料;關注會計學堂,學習更多會計知識。
㈤ 變速股利增長模型計算股票價值
首先按照CAPM模型計算股票投資者的期望報酬率:
r=rf+beta*(rm-rf)=7%+1.23*(13%-7%)=14.38%
然後計算第一階段每年的股利
D2007=D2006*(1+12%)=1.12*1.12=1.2544
D2008=D2007*(1+12%)=1.4049
D2009=D2008*(1+12%)=1.5735
D2010=D2009*(1+12%)=1.7623
第三步,計算四年後的股價,根據Gordon模型,
P2010=D2011/(r-g)=D2010*(1+17%)/(r-17%)
最後將第一階段每年的股利貼現,將四年後的股價貼現並求和就是目前的價值。
㈥ 股利增長率的計算公式
股利增長率的計算公式:
股利增長率與企業價值(股票價值)有很密切的關系。Gordon模型認為,股票價值等於下一年的預期股利除以要求的股票收益率和預期股利增長率的差額所得的商,即:
股票價值=DPS /(r-g)(其中DPS表示下一年的預期股利,r表示要求的股票收益率,g表示股利增長率)。
從該模型的表達式可以看出,股利增長率越高,企業股票的價值越高。
股利增長率=本年每股股利增長額/上年每股股利×100%
㈦ 股利固定增長的股票估價模型
可以用兩種解釋來解答你的問題:第一種是結合實際的情況來解釋,在解釋過程中只針對最後的結論所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)來進行討論,但理論依據上會有點牽強;第二種是從式子的推導過程來進行相關的論述,結合相關數學理論來解釋,最後解釋的結果表明g>R時,P0取值應為正無窮且結果推導。
第一種解釋如下:
這個數學推導模型中若出現g>=R的情況在現實中基本不會出現的。要理解這兩個數值在式子中成立時必有g<R恆久關系要結合現實進行理解。
若股利以一個固定的比率增長g,市場要求的收益率是R,當R大於g且相當接近於g的時候,也就是數學理論上的極值為接近於g的數值,那麼上述的式子所計算出來的數值會為正無窮,這樣的情況不會在現實出現的,由於R這一個是市場的預期收益率,當g每年能取得這樣的股息時,R由於上述的式子的關系導致現實中R不能太接近於g,所以導致市場的預期收益率R大於g時且也不會太接近g才切合實際。
根據上述的分析就不難理解g>=R在上述式子中是不成立的,由於g=R是一個式子中有意義與無意義的數學臨界點。
第二種解釋如下:
從基本式子進行推導的過程為:
P0=D1/(1+R)+ D2/(1+R)^2+D3/(1+R)^3 + ……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
這一步實際上是提取公因式,應該不難理解,現在你也可以用g>=R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現(1+g)/(1+R)>=1,這樣就會導致整個式子計算出來的數值會出現一個正無窮;用g<R時代入這個上述式子共扼部分(1+g)/(1+R)式子你就會發現0<(1+g)/(1+R)<1,這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](註:N依題意是正無窮的整數)
這一步實際上是上一步的一個數學簡化,現在的關鍵是要注意式子的後半部分。若g=R,則(1+g)/(1+R)=1,導致1-(1+g)/(1+R)這個式子即分母為零,即無意義,從上一步來看,原式的最終值並不是無意義的,故此到這一步為止g=R不適合這式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把這個結果代入原式中還是正無窮;g<R這個暫不繼續進行討論,現在繼續進行式子的進一步推導。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
這一步是十分關鍵的一步,是這樣推導出來的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其極值為零,即1-(1+g)^N/(1+R)^N極值為1,即上一步中的分子1-(1+g)^N/(1+R)^N為1;若g>R是無法推導這一步出來的,原因是(1+g)/(1+R)>1,導致(1+g)^N/(1+R)^N仍然是正無窮,即1-(1+g)^N/(1+R)^N極值為負無窮,導致這個式子無法化簡到這一步來,此外雖然無法簡化到這一步,但上一步中的式子的後半部分,當g>R時,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]這一個式子為正無窮,注意這個式子中的分子部分為負無窮,分母部分也為負值,導致這個式子仍為正無窮。
P0=D0(1+g)/(R-g)=D1/(R-g)
(註:從上一步到這里為止只是一個數學上的一個簡單簡化過程,這里不作討論)
經過上述的分析你就會明白為什麼書中會說只要增長率g<R,這一系列現金流現值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增長率g>R時,原式所計算出來的數值並不會為負,只會取值是一個正無窮,且g=R時,原式所計算出來的數值也是一個正無窮。
㈧ 股利定價模型計算該股票的內在價值
0.5*(1+8%)/(8%-X),X是股利的增長率,固定股利X=0,結果為6.75,該股低估。
㈨ 股利增長模型計算公式
股利增長模型計算公式:股利增長率=本年每股股利增長額/上年每股股利×100%。股利增長率就是本年度股利較上一年度股利增長的比率。
股利增長率就是本年度股利較上一年度股利增長的比率。從理論上分析,股利增長率在短期內有可可以高於資本成本,但從長期來看,如果股利增長率高於資本成本,必然出現支付清算性股利的情形,從而導致資本的減少。
想了解更多知識點能看股利政策有哪幾種
關注環球網校股利增長模型計算公式
㈩ 如何用股利增長率計算一年發多次股利的公司的未來股利
首先我不太清楚您計算年內多次分紅的目的是僅僅為了估測未來分紅本身還是希望以細分的分紅數據來進行更精確的估值。如果目的是後者,我想在一些情況下(如無限增長股利模型),可以繞過股利計算直接進行估值。
回到您的問題,我個人認為您給出的計算方法可行,對於一年分發多次股利的股票估值,參考一年支付多次利息的債券,每一期的股利進行簡單平均即可。注意,在估值時候的折現率也需要根據分發股息的頻率做出相應處理。