當前位置:首頁 » 交易知識 » 股票量化交易用什麼語言比較好
擴展閱讀
去年上市的股票代碼 2025-06-29 03:09:08
機械里的股票代碼 2025-06-29 02:43:53
安徽省天然氣股票代碼 2025-06-29 00:56:03

股票量化交易用什麼語言比較好

發布時間: 2021-05-08 16:58:12

⑴ 量化演算法交易員一般使用什麼語言為股票趨勢編程 MATLAB

一、三個指數的今日走勢,看量價,看走勢的輕重緩急,關鍵點位。
二、行業板塊指數的漲跌幅,資金交易量,這個與指數結合起來看,看看大盤是健康的還是畸形的。
三、看個股,因為幫客戶做風險控制,所以主要看客戶的個股,計算客戶明日最大虧損值,是否在可以承受范圍之內。

⑵ 做量化交易選擇什麼語言好呢

量化交易,就是把人能夠識別的信息變成數字,輸入給計算機程序處理,輔助或者代替人類的思考和交易決策。

初學者碰到的第一個問題就是工具的選擇。首先大部分交易員本來不會寫程序,選擇任何一個語言進行策略開發,都有不小的學習成本。更重要的是,選擇了一門語言,接下來開發環境、人員招聘、數據介面與平台、甚至同類人群之間的交流、遇到問題後的支持,都跟著被「套牢」。所以從一開始就必須慎重對待。

先給出答案:對於還沒有確定一套固定量化環境的,建議用Python。

量化交易員面臨的大致選擇有:C/C++/java/C#/R/Matlab/excel等。我們從以下幾個方面考慮簡單做個對比。

注意:這里假設你團隊規模在50人以下。

1 學習成本和應用的廣泛性

C、C++的特點是速度最快,但要想用好,必須對計算機底層架構、編譯器等等有較好的理解,這是非計算機專業的人很難做到的,對於做量化交易來說更是沒有必要。

Java本來是SUN的商業產品,有學習成本和體系的限制,也不適合。

Excel面對GB級別的數據無能為力,這里直接排除。

Python、R和Matlab學起來都簡單,上手也快,可以說是「一周學會編程」。但R和Matlab一般只用來做數據處理,而Python作為一門強大的語言,可以做任何事,比如隨時寫個爬蟲爬點數據,隨時寫個網頁什麼的,更何況還要面對處理實時行情的復雜情況。

2 開始做量化分析後,哪個用起來碰到問題最少,最方便省事?

用歷史數據的回測舉例。假設我們有2014年所有股票的全年日線,現在我們想看看600001的全年前10個最高股價出現在什麼時候。python世界有個強大的pandas庫,所以一句話就解決問題:

dailybar[dailybar [『code』]==『600001』].sort_values([『close』].head(10)

R/Mathlab等科學語言也可以做到。

C/C++沒有完備的第三方庫。如果為了做大量的計算,要自己實現、維護、優化相應的底層演算法,是一件多麼頭疼的事。

Python從一開始就是開源的,有各種第三方的庫可以現成使用。這些底層功能庫讓程序員省去了「造輪子」的時間,讓我們可以集中精力做真正的策略開發工作。

3 現在我們更進一步,要做實時行情分析和決策

以A股的入門級L1數據為例,每3秒要確保處理完3000條快照數據,並完成相應的計算甚至下單。這樣的場景,C和C++倒是夠快了。所以行情軟體比如大智慧、同花順等客戶端都是使用高效率的語言做的,但像客戶端那樣的開發量,絕大部分量化交易機構沒能力也沒必要去做吧。

python的速度足夠對付一般的實時行情分析了。其底層是C實現的,加上很多第三方的C也是C實現,盡管其計算速度比不上原生C程序,但對我們來說是足夠啦。

4 quant離職了,他的研究成果怎麼辦

Python是使用人群最多、社區最活躍的語言之一,也是最受quant歡迎的語言之一。如果你是老闆,你能更容易地招聘到優秀人材,享受到python社區帶來的便利。

附幾個量化中常用的python庫:

- Pandas:

天生為處理金融數據而開發的庫。幾乎所有的主流數據介面都支持Pandas。Python量化必備。

- Numpy:

科學計算包,向量和矩陣處理超級方便

- SciPy:

開源演算法和數學工具包,與Matlab和Scilab等類似

- Matplotlib:

Python的數據畫圖包,用來繪制出各類豐富的圖形和報表。

PS: Python也是機器學習領域被使用最多的語言之一。像tensorflow、scikit-learn、Theano等等對python都有極好的支持。

⑶ 量化交易,哪家的股票數據好

量化交易的話,其實對於數據這塊真心很厲害的,畢竟現在這個股票數據這塊的話是可以直接做到的啊

⑷ 股票量化交易是什麼

量化交易個以前的股票交易本質沒有區別,只是提高了工作效率,
量化交易分為量化分析和程序化自動交易
量化分析,如果你是普通散戶我現在問幾個問題,第一MACD指標默認參數下,在三千多隻股票日k上近兩年那隻收益最好,那隻虧損最大。這要人工多大的工作量,如果會寫程序代碼,幾行代碼就解決了。在繼續如果調換MACD參數能否增加收益用那幾個參數是最優組合,這要是人工基本無法完成,計算量太大了,但計算機就很快完成了參數優化。
而且量化分析不是技術分析,例如你問一個價值投資者,三千多家上市公司,你知道有多少家連續10年都沒虧損過嗎,同樣幾行代碼就知道。
假如你聽了一個老師的講課,說他的牛x戰法,普散戶聽了你只能價單試試,但量化分析我可以在不同市場不同時間周期,不同品種,進行回測嚴重,優化。這些就是量化分析。
程序化自動交易。
就是利用計算機技術自動交易,這對於散戶比較難實現,簡單的用第三方然間寫幾個交易策略可以實現自動交易。
但當你交易上你就會發現,滑點問題,你的速度不夠快,需要專線網路,需要底層語言的交易系統,高速的硬體設備。
但散戶還是必須要進行量化學習因為這樣才能更好的幫助你分析。
下圖就是最簡單的趨勢指標

⑸ 國內量化交易的主流開發語言有哪些

程序化交易交易策略核東西種種策略實際總結效交易式變按條件觸發程序化執行步驟效並收益高靠經驗或者看K線圖類涉及數、理甚至編寫代碼等等專業領域些團隊組些模型都要自析摸索否則抄效家工作勁呢都作股票

⑹ 什麼是股票量化交易

量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

⑺ 股票量化交易有用嗎哪一家做的比較好

現在市面上的量化交易APP大多是分析軟體,真正能夠直接參與交易的很少。相對於人性操作來說,量化交易刨除人性,做計劃之內的事情。真正意義上實現價值投資,比純人為的追漲殺跌要好很多。
我用過的殼子量化這個軟體還是不錯的,他裡面有多個模型,可以自己選擇。針對新人,裡面支持模擬,可以先使用模擬盤體驗一下量化交易帶來的不同。

⑻ 做量化交易一般用什麼軟體

需要懂一些數學模型,比如統計分析、人工智慧演算法之類的,他的本質是利用數學模型分析數據潛在的規律尋找交易機會,並利用計算機程序來搜尋交易時機以及完成自動化交易。並沒有現成的軟體可以做這個,因為它需要一個搭建一個專業的平台,這不是一個人可以完成的。

國內有一些軟體,比如大智慧提供數量分析,還有一些軟體提供股票、期貨的程序化交易。但是實際上這並不是真正意義上的量化交易。事實上,做一款純粹的適合個人投資者的量化投資軟體,難度是非常大的,因為量化策略並不想傳統的基本面、技術面那樣存在已有既定的必然規律。他需要跨越多學科,多領域去挖掘數據的規律,然後利用得出的規律進行交易。但是不同時間、空間的數據的潛在規律並不一致,所以對量化過程進行標准化是一件很難完成的事情。

如果是計算機或者數學專業的人士,可以考慮使用C、C++、SQL等語言,其他的可以使用MATLAB/SAS 等軟體。不管是哪一種軟體,要實現量化交易,肯定是需要一定的建模基礎和編程基礎的,其中最重要的東西是數學能力。