當前位置:首頁 » 交易知識 » 股票量化交易語言
擴展閱讀
法士特股票代碼是多少 2025-07-18 06:20:15
中國七砂股票 2025-07-18 05:31:30

股票量化交易語言

發布時間: 2021-06-14 11:45:11

㈠ 量化投資 用python好 還是c++

Python是非常適合做quant類工作的語言,本身就是科學計算方面的統治級語言,現在加入了IPython,pandas等重量級神器,為Quant類工作量身定做,而且仍在飛速發展中,以後會越來越重要。

關於其他語言,首先介紹一下我自己最喜歡的一個比較小眾的組合,Mathematica+Java/Scala。 Mathematica的優點在於:本身提供函數式的編程語言,表達能力非常強大,比如Map/Rece是標配,很多時候不需要去做煩人的for循環或下標控制,排版經常可以直接照數學公式原樣輸入,即直觀又不容易寫錯;代碼和輸出混排的排版方式使得建模時的演算和推理過程非常流暢,甚至還可以直接生成動畫,對於找直觀理解非常有幫助(這幾點分別被IPython和R偷師了一部分)。Mathematica的缺點在於對金融類的時間序列數據沒有很好的內建支持,使得存儲和計算都會比較低效,因此需要用內嵌Java的方式來補足,對於數據格式或性能敏感的操作都可以用Java/Scala實現。這個組合在我心目中無出其右,不論是快速建模,還是建模轉生產,都遠遠領先於其他選擇。但Mathematica的商用授權很貴,如果公司本身不認可的話很難得到支持,這是最致命的缺陷。另外隨著Python系的逐漸成熟,領先優勢在逐漸縮小,長遠看Python的勢頭更好一些。

其他答案里也列舉了不少其他語言,我自己既做Quant的工作,也做軟體開發的工作,這里想從一個軟體工程師的角度,說說我的理解。平時工作中會和一些偏Quant背景的人合作,很容易發現建模能力好的人往往在計算機方面基礎比較薄弱(因為以前的訓練重點不在這里)。他們也可以快速學習掌握一種像C++,Java這樣的語言,實現很多必要的功能。但是一方面這些語言陡峭的學習曲線和繁瑣的開發步驟會給他們真正要做的工作增加不必要的負擔,另一方面一旦涉及到性能敏感的情景,他們對計算機體系結構缺乏理解的缺點就容易暴露,比如說很可能他們沒有計算復雜度,內存碎片,cache miss,甚至多線程等概念,導致寫出的程序存在相當大的隱患。

即使是計算機功底扎實,如果每天的工作需要在C++,Python,R/Matlab,甚至一眾腳本語言之前來回切換,思維負擔也會非常重,人的精力是有限的,很難同時兼顧數學建模和底層代碼調試這種差距巨大的工作。長期發展下去最可能的結果就是要麼遠離建模,專心做生產環境開發,要麼遠離生產環境,專心建模。這種局面顯然不論對個人還是團隊都是有很大弊端的。

如果深入思考這個問題,相信不難得出結論,對於Quant來說,C++這種相當面向機器的語言肯定不是最佳選擇。的確在歷史上,它比更面向機器的C已經友好了很多,但是在計算機技術飛速發展的今天,如果還需要Quant大量使用C++做建模類的工作顯然是很遺憾的事情。設想一下你拿到一份股票數據,不論你是想分析價格走勢,成交量分布,還是波動性,第一件要做的事一定是畫出圖來看看,有一個直觀認識。如果你的工具是C++,肯定有很多時間花在編譯,調試,再編譯的過程上,好容易能解析文件了,接下來怎麼算移動平均?怎麼算波動性?全都要自己寫代碼。再然後怎麼畫圖?這整個工作流簡直慘不忍睹,這些問題浪費掉你大部分精力,而他們全部和你真正感興趣的工作毫無關系。所以如果你是一個數理金融等背景的新人打算開始Quant生涯,在決定是否要投資到這項重量級技術上時需要慎重,即便它目前的市場定價可能仍在峰值。相比之下我認為Python會是更理想的選擇,即能很好的完成建模工作,也可以訓練一定的編程技巧,使你在必要時也能勝任一些簡單的C++工作。

最後同意 @袁浩瀚,不要拘泥於語言,不論學習那一種,對其他的語言還是要抱有開放的心態。另外世界變化很快,你會發現單一的語言分類方式其實是沒有意義的,每一門語言在發展過程中都會逐漸吸收其他語言的特性,比如Python本身就既有C/C++/Java那樣命令式的特點,也有函數式的特點,像pandas甚至還提供類似SQL的使用方式,在其他語言或系統里也都或多或少包含了不同的特點,可以在學習過程里慢慢體會。

㈡ 當下對於量化投資有用的R語言包有哪些

quantomd包

㈢ 國內量化交易的主流開發語言有哪些

程序化交易交易策略核東西種種策略實際總結效交易式變按條件觸發程序化執行步驟效並收益高靠經驗或者看K線圖類涉及數、理甚至編寫代碼等等專業領域些團隊組些模型都要自析摸索否則抄效家工作勁呢都作股票

㈣ 國內量化交易平台哪家支持python等多門編程語言開發策略

你好,在金融量化交易領域,掘金量化交易平台可以支持多種主流編程語言的開發,包括python、R、Matlab, C, C++, C# ;可以滿足掌握不同編程語言的量化策略者的需求。

㈤ 量化演算法交易員一般使用什麼語言為股票趨勢編程 MATLAB

一、三個指數的今日走勢,看量價,看走勢的輕重緩急,關鍵點位。
二、行業板塊指數的漲跌幅,資金交易量,這個與指數結合起來看,看看大盤是健康的還是畸形的。
三、看個股,因為幫客戶做風險控制,所以主要看客戶的個股,計算客戶明日最大虧損值,是否在可以承受范圍之內。

㈥ 量化投資用什麼編程語言研發策略好呢

么以下我就以程序語言的角度來回答
當然如果已經會了某些語言,那你可以使用熟悉的語言去找網上的學習資源會比較快
如果沒有特別熟悉的語言,或者是願意多學一種非常好用的語言
我的建議是學習Python

我從以下幾點來分別說明

平台資源

國內外使用Python做雲端回測以及運算的免費平台相當的多,例如有 寬客在線,發明者量化,優礦, 等等不勝枚舉,可以使用平台的支持以及社區的互相幫助來學習

容易學習

綜合以上所說,"目前的環境底下" 我推薦Python.(推薦直接下載 Anaconda的集成開發環境)

㈦ Julia會替代Python成為量化投資熱門語言嗎

python被神話了
它出現的時間很早。1992年
所以設計上的理念很老,說白了不合時宜了
因為它用起來比JAVA什麼的方便,所以才會流行
但是它自身的語法問題太多,很多地方設計的太隨意了
新生代的語言必然會客服老的語言的錯誤和問題,所以JULIA替代PYTHON是大概率事件。

㈧ 量化投資要學那個語言好

Matlab 和 C++,一個建模一個執行,足夠了。實在不愛用Matlab的話,R和Python也行。多看書多學習,英語也是很重要的。可以找視頻和書籍學習。

個人推薦《量化投資:以python為工具》主要講解量化投資的思想和策略,並藉助Python 語言進行實戰。《量化投資:以Python為工具》一共分為5 部分,第1 部分是Python 入門,第2 部分是統計學基礎,第3 部分是金融理論、投資組合與量化選股,第4 部分是時間序列簡介與配對交易,第5 部分是技術指標與量化投資。《量化投資:以Python為工具》首先對Python 編程語言進行介紹,通過學習,讀者可以迅速掌握用Python 語言處理數據的方法,並靈活運用Python 解決實際金融問題;其次,向讀者介紹量化投資的理論知識,主要講解量化投資所需的數量基礎和類型等方面;最後講述如何在Python 語言中構建量化投資策略。

㈨ 做量化交易選擇什麼語言好呢

量化交易,就是把人能夠識別的信息變成數字,輸入給計算機程序處理,輔助或者代替人類的思考和交易決策。

初學者碰到的第一個問題就是工具的選擇。首先大部分交易員本來不會寫程序,選擇任何一個語言進行策略開發,都有不小的學習成本。更重要的是,選擇了一門語言,接下來開發環境、人員招聘、數據介面與平台、甚至同類人群之間的交流、遇到問題後的支持,都跟著被「套牢」。所以從一開始就必須慎重對待。

先給出答案:對於還沒有確定一套固定量化環境的,建議用Python。

量化交易員面臨的大致選擇有:C/C++/java/C#/R/Matlab/excel等。我們從以下幾個方面考慮簡單做個對比。

注意:這里假設你團隊規模在50人以下。

1 學習成本和應用的廣泛性

C、C++的特點是速度最快,但要想用好,必須對計算機底層架構、編譯器等等有較好的理解,這是非計算機專業的人很難做到的,對於做量化交易來說更是沒有必要。

Java本來是SUN的商業產品,有學習成本和體系的限制,也不適合。

Excel面對GB級別的數據無能為力,這里直接排除。

Python、R和Matlab學起來都簡單,上手也快,可以說是「一周學會編程」。但R和Matlab一般只用來做數據處理,而Python作為一門強大的語言,可以做任何事,比如隨時寫個爬蟲爬點數據,隨時寫個網頁什麼的,更何況還要面對處理實時行情的復雜情況。

2 開始做量化分析後,哪個用起來碰到問題最少,最方便省事?

用歷史數據的回測舉例。假設我們有2014年所有股票的全年日線,現在我們想看看600001的全年前10個最高股價出現在什麼時候。python世界有個強大的pandas庫,所以一句話就解決問題:

dailybar[dailybar [『code』]==『600001』].sort_values([『close』].head(10)

R/Mathlab等科學語言也可以做到。

C/C++沒有完備的第三方庫。如果為了做大量的計算,要自己實現、維護、優化相應的底層演算法,是一件多麼頭疼的事。

Python從一開始就是開源的,有各種第三方的庫可以現成使用。這些底層功能庫讓程序員省去了「造輪子」的時間,讓我們可以集中精力做真正的策略開發工作。

3 現在我們更進一步,要做實時行情分析和決策

以A股的入門級L1數據為例,每3秒要確保處理完3000條快照數據,並完成相應的計算甚至下單。這樣的場景,C和C++倒是夠快了。所以行情軟體比如大智慧、同花順等客戶端都是使用高效率的語言做的,但像客戶端那樣的開發量,絕大部分量化交易機構沒能力也沒必要去做吧。

python的速度足夠對付一般的實時行情分析了。其底層是C實現的,加上很多第三方的C也是C實現,盡管其計算速度比不上原生C程序,但對我們來說是足夠啦。

4 quant離職了,他的研究成果怎麼辦

Python是使用人群最多、社區最活躍的語言之一,也是最受quant歡迎的語言之一。如果你是老闆,你能更容易地招聘到優秀人材,享受到python社區帶來的便利。

附幾個量化中常用的python庫:

- Pandas:

天生為處理金融數據而開發的庫。幾乎所有的主流數據介面都支持Pandas。Python量化必備。

- Numpy:

科學計算包,向量和矩陣處理超級方便

- SciPy:

開源演算法和數學工具包,與Matlab和Scilab等類似

- Matplotlib:

Python的數據畫圖包,用來繪制出各類豐富的圖形和報表。

PS: Python也是機器學習領域被使用最多的語言之一。像tensorflow、scikit-learn、Theano等等對python都有極好的支持。