當前位置:首頁 » 交易知識 » 股票量化交易模型編程
擴展閱讀
酷派股票代碼是多少 2025-07-15 16:29:31
股票交易手續費計算在線 2025-07-15 14:44:41

股票量化交易模型編程

發布時間: 2021-06-15 21:08:05

⑴ 量化交易都有哪些主要的策略模型

研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。

量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。 量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。

⑵ 什麼是股票量化交易

量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

⑶ 量化交易程序開發是做什麼的

量化交易是利用計算機程序語言編寫程序來實現,分析行情走勢,分析公司基本面,分析經濟數據,也可以實現自動化交易,舉個簡單例子,以前的價值投資者投資股票調研,你需要實地考察,現在很簡單,我投資某上市公司,想調用它的產品,我只需要檢測跟這產品有關的活躍論壇,群,幾大網路銷售平台的銷量評價,就能獲得一手調用數據了。量化交易比普通際交易者的優勢就在於,他的分析效率高,你問一個主觀交易者MACD指標在三千多隻股票里哪只收益最高,那隻收益最差,最優參數是多少,主觀交易者會告訴你指標不能信那東西都是主力騙人的。因為他不可能知道人工回測三千多隻股票的MACD指標一個金叉一個死叉的算還沒優化參數呢,人都得累死。但你問量化交易者他幾行代碼,計算機跑一會,三千多隻股票就回策完了。並告訴你歷史上那些參數是最優的哪些是最差的。
量化交易還有很多優勢,但量化交易本質上和主觀交易沒區別,只是效率大大提高,交易的策略還是以人的思維為主導地位的。目前機器學習還不能自己獨立交易,計算機都是按照人設計好的策略,來執行交易指令的。

⑷ 如何開發量化投資模型

4.如何進行量化投資
一個量化投資的交易系統主要包括三個部分,阿爾法模型、風險模型和交易成本模型。
阿爾法模型旨在預測寬客所考慮金融產品的未來趨勢;
風險模型旨在幫助寬客投資不太能帶來收益但會造成損失的敞口規模;
交易成本模型用於幫助確定從目前的投資組合到新的投資組合的交易成本。
目前對於量化交易的研究重點大都集中在對阿爾法模型的研究上。
阿爾法模型
阿爾法模型是量化交易系統的第一個重要組成部分,主要是為了尋找盈利機會。
阿爾法是希臘字母α的音譯,常用於量化表述投資者的盈利能力或投資者得到的與市場波動無關的回報。
阿爾法模型分為:
趨勢形、回復型、技術情緒型、價值型/收益型、成長型和品質型
趨勢型和均值回復型交易策略都依賴價格數據;純技術情緒型的策略比較少見通常都只作為一個輔助因子;而價值型/收益型、成長型和品質型策略都基於基本面數據
趨勢跟隨策略
趨勢跟隨策略是基於以下基本的假定:在一定時間內市場通常朝著同一方向變化,據此對市場趨勢做出判斷就可以作為制定交易策略的依據。常見於期貨市場,最常用移動平均線交叉來定義趨勢。
均值回復策略
均值回復策略的基本理論認為,價格圍繞其價值中樞而上下波動,判斷出這個中樞以及波動的方向便足以捕捉到交易機會。統計套利是用的最多的均值回復策略,認為價格出現背離類似股票的價值終究會縮小到合理的區間范圍。
技術情緒型策略
這一類策略沒有明確的經濟理論支撐,主要通過追蹤投資者情緒相關指標來判斷預期回報,如交易價格、交易量以及波動性指標等。比如觀察期權市場的認沽認購量和隱含波動率做現貨的擇時,再者就是高頻交易通過限價指令簿的形態來判斷近期市場情緒。
價值型/收益型策略
價值型策略主要用於股票交易。這類策略認為市場傾向於高估高風險資產的風險,而低估低風險資產的風險。因此,在適當的時間買入高風險資產和賣出低風險資產,就可以獲得收益。常用的指標有PE(市盈率)、PB(市凈率)等,常應用於股票多空。
成長型策略
成長型策略試圖通過對所考慮資產以往的增長水平進而對未來的走勢進行預測。他認為價格上漲通常都是存在趨勢的,價格上漲最快的產品通常比同類產品更具有優勢,他要求投資者能盡早判斷公司的股價處於增長期,從而捕捉到公司的股價未來更大的上漲幅度。宏觀上常見於外匯市場,例如持有經濟迅速增長的國家的外匯,這些國家的利率比經濟增長緩慢或處於復甦期的經濟體要高;股票市場通常用EPS等指標度量。
品質型策略
這類策略的支持者認為,在其他條件相同的條件下最好買入或持有高品質的產品而做空或減少持有低品質的資產。這類策略比較看重資金的安全,受宏觀市場影響比較大,常用的指標有杠桿比率、收入波動比、管理團隊水平和欺詐風險。
不管是什麼類型的策略最終受益都體現在交易中關於買賣時機的把握和持有頭寸選擇的技巧。
https://uqer.io/community/list 這個社區裡面有很多關於量化的策略,也有很多牛人,可以和他們多討論討論的。

⑸ 股票普通投資者有沒有辦法通過編程實現程序化交易

可能不需要編程,在同花順里好像就有自定義交易規則,只不過我不敢讓它自己跑,都是手動下單的...

⑹ 如何建立一個股票量化交易模型並模擬

研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。

⑺ 量化演算法交易員一般使用什麼語言為股票趨勢編程 MATLAB

一、三個指數的今日走勢,看量價,看走勢的輕重緩急,關鍵點位。
二、行業板塊指數的漲跌幅,資金交易量,這個與指數結合起來看,看看大盤是健康的還是畸形的。
三、看個股,因為幫客戶做風險控制,所以主要看客戶的個股,計算客戶明日最大虧損值,是否在可以承受范圍之內。

⑻ 如何建立一個股票量化交易模型並模擬

用文化財經軟體,編寫程序化交易系統,具體參考官網教程

⑼ 做量化交易一般用什麼軟體

需要懂一些數學模型,比如統計分析、人工智慧演算法之類的,他的本質是利用數學模型分析數據潛在的規律尋找交易機會,並利用計算機程序來搜尋交易時機以及完成自動化交易。並沒有現成的軟體可以做這個,因為它需要一個搭建一個專業的平台,這不是一個人可以完成的。

國內有一些軟體,比如大智慧提供數量分析,還有一些軟體提供股票、期貨的程序化交易。但是實際上這並不是真正意義上的量化交易。事實上,做一款純粹的適合個人投資者的量化投資軟體,難度是非常大的,因為量化策略並不想傳統的基本面、技術面那樣存在已有既定的必然規律。他需要跨越多學科,多領域去挖掘數據的規律,然後利用得出的規律進行交易。但是不同時間、空間的數據的潛在規律並不一致,所以對量化過程進行標准化是一件很難完成的事情。

如果是計算機或者數學專業的人士,可以考慮使用C、C++、SQL等語言,其他的可以使用MATLAB/SAS 等軟體。不管是哪一種軟體,要實現量化交易,肯定是需要一定的建模基礎和編程基礎的,其中最重要的東西是數學能力。

⑽ 股票量化交易是程序化交易嗎

是程序化交易.但前提是使用者,得有一定的計算機編程能力,但這不需要太復雜的編程邏輯,很多軟體都帶公式管理器,就是為一些喜歡程序化的用戶提供的.