『壹』 量化交易平台的回測邏輯
量化 平台 基本 採用 「 初始 化 函 數 → 從平台數據 庫取出 數據 → 每個 周 期 執 行 調 倉 函數 →回測結 束計 算 統計量
『貳』 股市中的量化交易是什麼意思呢
量化交易(quantitative Trading)是利用數學、統計、計算機的模型和方法來指導在金融市場的交易,可以自動下單業可以半自動下單,這個不是核心,核心在於是不是系統化交易(systematic trading)。
比如主觀交易會看K線交易,量化交易業會,但區別在於量化交易可以在歷史數據上回測各種交易規則,找到表現好的,然後才用來交易。這或許會有過度擬合的風險,但也有一些方法克服。
量化交易雖然有很多優點,但是真的能戰勝市場,並且保證勝率,我覺得很難說。
『叄』 量化策略一般用什麼平台回測分別有什麼優劣勢
盈時量化策略回測平台,不會編程也能玩轉量化。
盈時「策略機器人」集策略智能生成、策略評估、篩選優化、批量生成等功能於一體的互動式策略生成平台。平台以計算機智能生成演算法為核心,使用了機器學習、模式識別、統計學、可視化技術等人工智慧技術,包含策略構建模塊、混編計算模塊、策略績效優化模塊等組件,在策略優化方面使用了高效的遺傳編程與NSGA-II等演算法,進而充分利用CPU多核心性能,實現多進程同步高效生成策略。
語言:Python
適用人群:期貨投資者(有無編程基礎都可)
資料庫:期貨
回測用時:需要排隊分鍾記
支持的功能:支持將策略使用在交易開拓者的平台,屬於實盤交易。策略給出建議,但需要自己手動確定進行買賣。
自動生成策略原理與簡介:通過設置參數,運用機器學習的方法,一鍵生成源碼策略。
備註:國內首個利用深度學習的人工智慧量化平台,不懂編程也能做量化。
盈時,專注於為客戶提供高品質的量化交易技術咨詢服務和領先的量化交易產品,是一家從事金融數據分析、金融軟體開發、程序化交易演算法與交易策略研究等業務的科技公司。
『肆』 如何看待量化交易的回測
美股研究社指出:不同風格的策略對於回測的要求是不同的,比如對於多因子選股或者趨勢策略等,需要注意的幾點是:
1. 區分好樣本內數據和樣本外數據,這個和機器學習很類似,樣本內數據用於訓練,樣本外數據用於校驗。這樣做的目的是為了避免過擬合陷阱。
2. 收益的分布,看看你回測後所有交易的收益分布,看看你的收益來源是少數的幾次大的收益還是來源多次的小的收益。來源於大的收益,你的收益波動性就很大,實盤往往會達不到你的效果。
3. 參數的穩定性。如果你某個參數過敏感,隨便調整下就對收益影響很大,那你實盤的情況和模擬盤也有很大可能會有出入。
這類策略嚴格來說,避免了一些常見的坑,還是比較容易做到回測和實盤類似的。
京東量化最新推出了一些通達信的技術指標還不錯,你們可以去看一下,應該能學到好多東西。
『伍』 如何利用excel回測量化投資策略
用excel回策量化策略,效率太低了,而且數據過大的話excel完成不了,可以利用現有的量化交易平台,如果非的用excel回策,你至少要學會各種技術指標,和如何用計算機語言描述走勢行情分析,還需要會編輯回測所用的各種回測指標公式,你才能完成excel的量化回測,初學時可以用這個但,實際應用時,至少要用一套量化分析平台的軟體,或者自己利用c語言,Python,等開發出一套量化分析軟體。
『陸』 國內哪家股票/期貨量化交易平台支持tick級回測
國信tradestation支持股票、期貨、期權交易,你說的量化回測都可以
『柒』 量化交易測試歷史數據,程序化交易歷史回測數據哪裡找
大富翁數據中心有股票,期貨等等tick等,可用於量化交易測試,程序化交易歷史回測
『捌』 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
『玖』 量化交易的回測和調試到底是什麼意思
就是通過以前的行情數據進行測試,調整系統,藉此提高交易系統的可靠性。一個量化系統不能開發出來就用於實戰,畢竟都是真金白銀,所以得先進行回測調試。