㈠ 通達信量化選股公式
通達信的選股公式為xg:v>ref(v,1)*2 and c>ref(c,1)。公式的定義為今天的量大於等於昨天量的2倍,股價上漲。此公式的使用說明有以下幾點:1、五行量化指標(淺灰色實心空心方格):實心代表趨勢走好,空心代表趨勢走壞;2、操盤動力線指標(黃金線):短線靈敏指標,低位拐頭向上可跟進,高位拐頭向下要警惕,附有高低位買賣提示;3、海洋狀態指標(綵帶):綵帶顏色代表短中期多空趨勢,低位轉紅可跟進,高位變色宜減倉、清倉。
量化選股的方法
1、多因素模型(Multiple-factor regression)
多因素模型將那些引起證券價格聯動的因素直接加入到收益率公式之中,然後開發基於這些因素的模型,簡化投資組合分析所要求的關於證券之間相關系數的輸入。模型效果的好壞主要取決於因素的選取,即那些被選定的因素是否足以證明,證券收益率之間聯動效應的根源在於那些因素對各證券的共同影響。
2、動量反轉選股
有效市場假說分三個層次,分別為弱有效市場、 半強有效市場、 強有效市場分別代表價格反映了歷史信息、公開信息和全部信息。
動量效應(Momentum Effect)指的是投資策略或組合的持有期業績方向和形成期業績方向一致的股價波動現象;
而反轉效應(ContrarianEffect)則指的是投資策略或組合的持有期業績方向和形成期業績方向相反的股價波動現象。
3、分類和回歸樹(Classification and regression tree)
分類和回歸樹是數據挖掘技術的一種,以遞歸分割技術為基礎(常用於制葯學的研究),包括分類樹和回歸樹:分類樹產生定性輸出,回歸樹處理定量輸出。
4、神經網路(Neural networks)
因為股市的建模與預測所處理的信息量往往十分龐大,因此對演算法有很嚴格要求,它的非線性動力學特性也非常復雜,所以一般傳統的方法對於股市的預測往往難如人意。人工神經網路不僅具有大規模並行模擬處理、網路全局作用和非線性動力學等特點,而且有很強的自適應、自學習以及容錯能力,具備傳統的建模方法所不具有的許多優點,其可以不必事先知道有關被建模對象的參數、結構以及動態特性等方面的知識, 對被建模對象經驗知識要求不高。 而只需給出對象的輸入和輸出數,通過網路本身的學習功能即可實現輸入和輸出之間的映射。
㈡ 股票超級量化買賣點公式
DIFF:=EMA(CLOSE,13) - EMA(CLOSE,34);
DEA:=EMA(DIFF,13);
MACD:=2*(DIFF-DEA/2);
AH:=HHV(MACD,13*1);
AL:=LLV(MACD,13*0.3);
STICKLINE(MACD>0,MACD,0,1,0),COLOR0000AA,LINETHICK1;
STICKLINE(MACD<0,MACD,0,1,0),COLOR008800,LINETHICK1;
趨勢線:=EMA(MACD,34);
IF(趨勢線>REF(趨勢線,1),趨勢線,DRAWNULL),COLORYELLOW;
IF(趨勢線<=REF(趨勢線,1),趨勢線,DRAWNULL),COLORFF5000;
DRAWBAND(趨勢線,RGB(255,255,0),REF(趨勢線,1),RGB(0,88,255));
K:=SMA(MACD,2,1);
D:=SMA(K,2,1);
J:=SMA(D,2,1);
STICKLINE(MACD>0,0.000001,0.000003,3,0),COLORRED;
STICKLINE(MACD<0,0.000001,0.000003,3,0),COLORGREEN;
DRAWTEXT_FIX(C>O,0.01,0.9,0,'
IF(K>REF(K,1),K,DRAWNULL),COLORRED;
IF(K<=REF(K,1),K,DRAWNULL),COLORGREEN;
IF(D>REF(D,1),D,DRAWNULL),COLORRED;
IF(D<=REF(D,1),D,DRAWNULL),COLORGREEN;
IF(J>REF(J,1),J,DRAWNULL),COLORRED,LINETHICK2;
IF(J<=REF(J,1),J,DRAWNULL),COLORGREEN,LINETHICK2;
STICKLINE(REF(MACD,1)
STICKLINE(MACD=AH,AH,K,3,0),LINETHICK1,COLORRED;
STICKLINE(REF(MACD,2)>MACD,MACD,REF(MACD,1),3,1),COLORGREEN;
㈢ 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
㈣ 股票量化指標有哪些
「量化指標」—是指能用具體數據來體現的指標!如成交量、市盈率、日漲幅等等。
㈤ 量化交易是什麼
「量化交易」有著兩層含義:一是從狹義上來講,是指量化交易的內容,將交易條件轉變成為程序,自動下單;二是從廣義上來講,是指系統交易方法,就是一個整合的交易系統。
【拓展資料】
一、量化交易主要運用數學公式來構建模型,經過大量數據來判斷將來價格走勢,並且由程序進行擇機選股的一種方式。它的選股而十分廣泛,覆蓋面達到上百隻甚至上千隻股票,並且能夠排除迫漲殺跌等人為因素,紀律性很強。
二、「量化交易」有著兩層含義:一是從狹義上來講,是指量化交易的內容,將交易條件轉變成為程序,自動下單;二是從廣義上來講,是指系統交易方法,就是一個整合的交易系統。即為根據一系列交易條件,智能化輔助決策體系,將豐富的從業經驗與交易條件相結合,在交易過程管理好風險控制。
三、量化交易至少應該包括五個方面的要素:
(1)買入和賣出的信號系統。
(2)牛市還是熊市的方向指引,比如用200天移動平均線分辨熊市中系統風險的規避。
(3)頭寸管理以及資金管理。
(4)風險控制,運用信號源來確定止損位置,利用資產曲線和權益曲線來加以判定和管理。
(5)投資組合,不一樣的投資品種、不相同的交易系統(不同功能和參數,有快有慢)以及四、不相同時間周期組合,現分散組合,讓交易賬戶波動更加穩定。量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
五、首先,從全球市場的參與主體來看,按照管理資產的規模,2018年全球排名前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,而且進入2019年由量化及程序化交易所管理的資金規模進一步擴大。
六、其次,全球超70%的資金交易用計算機或者程序進行,其中一半是由量化或者程序化的管理人來操盤。在國外招聘網站搜索金融工程師(包括量化、數據科學等關鍵詞)會出現超過33萬個相關崗位。
七、第三、從高校的培養方向來看,已有超過450所美國大學設置了金融工程專業,每年相關專業畢業生達到1.5萬人,市場需求與畢業生數量的差距顯著,因此數據科學、計算機科學、會計以及相關STEM(基礎科學)學生畢業後進入金融行業從事量化分析和應用開發的相關工作。
八、國內市場,目前國內量化投資規模大概是3500到4000億人民幣,其中公募基金1200億,其餘為私募量化基金,數量達300多家,佔比3%(私募管理人共9000多家),金額在2000億左右。中國證券基金的整體規模超過16萬億,其中公募14萬億,私募2.4萬億,樂觀估計,量化基金管理規模在國內證券基金的佔比在1%~2%,在公募證券基金佔比不到1%,在私募證券基金佔比5%左右,相比國外超過30%的資金來自於量化或者程序化投資,國內未來的增長空間巨大。
九、量化交易特點,編輯,量化投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於量化投資管理是「定性思想的量化應用」,更加強調數據。
十、量化交易具有以下幾個方面的特點:
1.紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2.系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
㈥ 量化交易都有哪些主要的策略模型
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。 量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
㈦ 股票量化交易是什麼
量化交易個以前的股票交易本質沒有區別,只是提高了工作效率,
量化交易分為量化分析和程序化自動交易
量化分析,如果你是普通散戶我現在問幾個問題,第一MACD指標默認參數下,在三千多隻股票日k上近兩年那隻收益最好,那隻虧損最大。這要人工多大的工作量,如果會寫程序代碼,幾行代碼就解決了。在繼續如果調換MACD參數能否增加收益用那幾個參數是最優組合,這要是人工基本無法完成,計算量太大了,但計算機就很快完成了參數優化。
而且量化分析不是技術分析,例如你問一個價值投資者,三千多家上市公司,你知道有多少家連續10年都沒虧損過嗎,同樣幾行代碼就知道。
假如你聽了一個老師的講課,說他的牛x戰法,普散戶聽了你只能價單試試,但量化分析我可以在不同市場不同時間周期,不同品種,進行回測嚴重,優化。這些就是量化分析。
程序化自動交易。
就是利用計算機技術自動交易,這對於散戶比較難實現,簡單的用第三方然間寫幾個交易策略可以實現自動交易。
但當你交易上你就會發現,滑點問題,你的速度不夠快,需要專線網路,需要底層語言的交易系統,高速的硬體設備。
但散戶還是必須要進行量化學習因為這樣才能更好的幫助你分析。
下圖就是最簡單的趨勢指標

㈧ 股票量化是什麼
股票量化即「量化交易」有兩層含義:一是狹義的,指量化交易的內容,將交易條件轉化為程序,自動下單;第二,廣義上是指系統交易方式,是一個綜合的交易系統。也就是說,根據一系列的交易條件,一個智能的輔助決策系統,將豐富的經驗與交易條件相結合,在交易過程中管理風險控制。
通過量化交易制定策略的方法極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
具體如何理解股票量化交易,量化交易至少應該包括五個方面的要素:
(1)買入和賣出的信號系統。
(2)牛市還是熊市的方向指引,比如用200天移動平均線分辨熊市中系統風險的規避。
(3)頭寸管理以及資金管理。
(4)風險控制,運用信號源來確定止損位置,利用資產曲線和權益曲線來加以判定和管理。
(5)投資組合,不一樣的投資品種、不相同的交易系統(不同功能和參數,有快有慢)以及不相同時間周期組合,現分散組合,讓交易賬戶波動更加穩定。以上就是關於如何理解股票量化交易的全部講解。
量化投資和傳統的定性投資本質上是一樣的,都是建立在低效或弱有效市場的理論基礎上。兩者的區別在於:量化投資管理是「定性思維的定量應用」,更強調數據。
從量化交易的角度來看,目前國內多採用監督式機器學習。例如,我們將投資交易比作裝配廠。手工交易就像工人手工完成的傳統裝配工作。量化交易就像把工廠改造成全自動裝配車間。雖然在整個,組裝過程中沒有人的參與,但是設計師應該指定機器在頂級設計中應該在什麼時候做什麼。
㈨ 量化交易都有哪些主要的策略模型
1、Alpha策略
全對沖的叫做Alpha策略,不對沖的在市面上常被稱作指數增強策略。二者所用模型一樣,但後者少了期貨的對沖。缺少對沖有壞處也有好處,壞處是這種策略的收益曲線是會有較大的回撤。但好處方面,在大漲的年份,這種策略的表現會特別好。
2、CTA策略
CTA策略的特點是收益風險比相對Alpha來說會較低。但是在行情較好的年份收益可能會很高,尤其是在早期。而且,無論是在編程還是策略上,CTA入門的難度相對來說都是最低的。
3、高頻交易策略
國內使用高頻交易策略主要應用在,期貨趨勢、期貨套利、期貨做市、股票T+0以及全做市交易,國外機構自營交易,比如美股以及股指等。國內做高頻交易的基本上都是私募,但高頻交易的產品基本上不會對外募集或者極少對外募集。

國內發展趨勢
國內量化投資規模大概是3500到4000億人民幣,其中公募基金1200億,其餘為私募量化基金,數量達300多家,佔比3%(私募管理人共9000多家),金額在2000億左右。
中國證券基金的整體規模超過16萬億,其中公募14萬億,私募2.4萬億,樂觀估計,量化基金管理規模在國內證券基金的佔比在1%~2%,在公募證券基金佔比不到1%,在私募證券基金佔比5%左右,相比國外超過30%的資金來自於量化或者程序化投資,國內未來的增長空間巨大。
