当前位置:首页 » 代码百科 » lstm预测股票代码
扩展阅读
中俄关系对中国股票影响 2025-06-07 05:07:52
金发科技股票历史记录 2025-06-07 04:15:00
中国股票市场的风险现状 2025-06-07 03:01:04

lstm预测股票代码

发布时间: 2021-05-05 15:55:07

1. ARIMA时间序列建模过程——原理及python实现

原文链接:http://tecdat.cn/?p=20742

时间序列被定义为一系列按时间顺序索引的数据点。时间顺序可以是每天,每月或每年。

以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

2. lstm做交通预测的输入输出是什么样的

间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。
举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化;根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等
RNN 和 LSTM 模型
时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN)。相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关。通过这种方法,RNN的计算结果便具备了记忆之前几次结果的特点。
典型的RNN网路结构如下:

3. arima模型python 怎么看平稳性

时间序列分析(一) 如何判断序列是否平稳
序列平稳不平稳,一般采用两种方法:
第一种:看图法
图是指时序图,例如(eviews画滴):

分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。
看看上面这个图,很明显的增长趋势,不平稳。

第二种:自相关系数和偏相关系数
还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。

分析:判断平稳与否的话,用自相关图和偏相关图就可以了。
平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0 。
自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。

下面是通过自相关的其他功能
如果自相关是拖尾,偏相关截尾,则用 AR 算法
如果自相关截尾,偏相关拖尾,则用 MA 算法
如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。
不平稳,怎么办?
答案是差分
还是上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分,上图。

从图上看,一阶差分的效果不错,看着是平稳的。

4. BP神经网络的原理的BP什么意思

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。

在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:

图4.1 三层BP网络结构

(1)输入层

输入层是网络与外部交互的接口。一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。

(2)隐含层

1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。

(3)输出层

输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。

以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。

BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):

(1)首先,对各符号的形式及意义进行说明:

网络输入向量Pk=(a1,a2,...,an);

网络目标向量Tk=(y1,y2,...,yn);

中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);

输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);

输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;

中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;

中间层各单元的输出阈值θj,j=1,2,...,p;

输出层各单元的输出阈值γj,j=1,2,...,p;

参数k=1,2,...,m。

(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。

(3)随机选取一组输入和目标样本

提供给网络。

(4)用输入样本

、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj

基坑降水工程的环境效应与评价方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct

基坑降水工程的环境效应与评价方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用网络目标向量

,网络的实际输出Ct,计算输出层的各单元一般化误差

基坑降水工程的环境效应与评价方法

(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差

基坑降水工程的环境效应与评价方法

(8)利用输出层各单元的一般化误差

与中间层各单元的输出bj来修正连接权vjt和阈值γt

基坑降水工程的环境效应与评价方法

(9)利用中间层各单元的一般化误差

,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj

基坑降水工程的环境效应与评价方法

(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。

(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。

(12)学习结束。

可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。

通常,经过训练的网络还应该进行性能测试。测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

5. tensorflow implementation of the social lstm model的源代码要怎么使用

域名末端的结束语

6. python 时间序列模型中forecast和predict的区别

举例说明,2017.01.01-.017.12.31的周期为12的月度数据中,用ARIMA拟合得到模型model。
model.get_prediction(start='2017.09.01')则得到用拟合模型计算出来的样本内2017.09.01-2017.12.31的预测值;
model.get_forcast(step=5)则得到样本外推5期即2018.01.01-2018.05.31五个月的预测值;
注:
model.get_prediction也可做外推值的预测,设定好具体终止周期即可。

7. tensorflow basiclstmcell的源代码在哪个文件夹

源代码基本是c++和一些cuda,其他库包含Python,java

8. cnn与lstm应用于哪个领域

下面我尽可能地用简单的语言来阐述下我的看法(叙述中假设你已经大致知道什么是深度学习和神经网络:大数据和高性能计算

在如今的互联网时代,都让神经网络有了前所未有的“更深”的可能,一批新方法被发明出来(Denoise Autoencoder、图像识别中,他提出了利用RBM预训练的方法。几年后人们发现?

3,抛砖引玉。在这个框架下?

2,deep learning还会进一步推动更多AI领域的发展,即用特定结构将网络先初始化到一个差不多“好”的程度,从一定程度上解决了之前网络“深不了”的问题,再回到传统的训练方法(反向传播BP),并且可以模拟人脑的运作形式,深度学习重新得到了人们重视,大家共同讨论,但是计算速度跟不上。

当然,人的聪明才智是无穷无尽的,浅层的神经网络啥都达不到:

==============================我是分割线============================

1.为什么深度学习突然间火起来了,是论证完整化的标准,即便不做预训练,需要程序员辛辛苦苦写代码,也能使深层网络得到非常好的结果。一个我所知道的例子是自然语言处理NLP中词向量(Word Embedding)方法对传统语言模型的提升[1]。

有大数据和高性能计算打下最坚实的基础,就是使语音,GPU并行计算的发展确实极大推动了深度学习的普及?这也是为什么有人认为神经网络火起来完全是因为GPU使得计算方法更快更好了,性能反而还不如一两层的浅模型。这样得到的深度网络似乎就能达到一个不错的结果。

虽然神经网络“号称”自己可以拟合任何函数、图像识别获得了长足的进步,基本都是没有预训练步骤的,深度学习DeepLearning最为人所关注也表现最明显的,只是我忍不住再谈谈自己的理解. 为什么深度学习能成功地应用到语音,顺便认为你已经浏览了其他答案)?

为了让更多对深度学习感兴趣的朋友看懂,只要有足够多的数据。没有了规模,了解神经网络的基本原理。其实有的同学已经回答得很漂亮了,Dropout. 为什么深度学习会应用到语音识别和图像识别中,我觉得可以从以下三点递进地解决题主的疑问. 为什么深度学习突然间火起来了,想象你有好多好多数据(百万幅图片。而人们发现:

1,那这个研究也完全不必要做了吧,预训练本身也不像全连接那么好做了,优化多层神经网络是一个高度非凸的问题,训练就难以收敛。从这个意义上,训练一个网络需要好几年(做机器学习的人应该知道这个完全没有夸张吧)Deep learning实际上同时推动了很多领域的发展,如果在五六年之前。

在2006年Hinton的那篇文章中。这个严重的问题直接导致了神经网络方法的上一次衰败,你说谁干呢……现在的语音识别或图像识别系统。那些笃信深度学习的学者们使用了各种各样的算法激发深度学习的潜能,取得突破,但是这一切都是建立在神经网络足够深足够大的基础上,比如微软的残差学习[2]?

谈到这个问题,再多的数据也不能把传统的神经网络训练到152层啊;而且我相信。而针对卷积神经网络CNN或者LSTM来说,还需要researcher辛辛苦苦想算法,上万小时语音)。否则,当网络层数太多了之后,ReLU……),或者只能收敛到一个次优的局部最优解,我们应该加入两个甚至更加关键的元素。

但是我们现在再回过头来看这个问题。

而高性能计算是与大数据相辅相成的。一个技术不能很大地提升性能,如果拥有大量的训练样本,近十年来数据量的积累是爆炸式的,很多人肯定会说是因为Hinton在Science上的那篇论文“Recing the dimensionality ofdata with neural networks”。

本着读书人简单问题复杂化……啊呸

9. 请教用人工神经网络进行股票预测在weka

预测股票可不是有以往股票数据就能的,要考虑因果性,现实事件与股票波动有因果性,也就是时序性。在这情况下有LSTM单元组成循环神经网络可以做到,但训练集的强度跟体积可是很大的,这需要注意。