当前位置:首页 » 代码百科 » sas中garch模型预测股票代码
扩展阅读
齐鲁华信股票代码 2025-06-18 01:12:11
股票账户能不能抵押 2025-06-17 20:56:34
一支股票交易量怎么看 2025-06-17 20:55:40

sas中garch模型预测股票代码

发布时间: 2021-07-13 05:44:14

⑴ garch模型 怎么预测未来具体值我用sas 和eviews都只会得出模型 不会预测未来值~~

EVIEWS能出来具体数值,如果你预测的是y,一般他会在yf里,你也可以自己定义变量的,看看你有没有

⑵ 求助,如何利用SAS对GARCH模型做具体预测

建立模型之后做save即可,out=来做

⑶ garch模型怎么用sas预测

你好,很高兴为你解答,
EVIEWS能出来具体数值,如果你预测的是y,一般他会在yf里,你也可以自己定义变量的,看看你有没有
答题不易,相互帮助,相互理解。
您的采纳是我前进的动力。

⑷ GARCH模型测股票波动性需要什么数据

你只需下载股票每日历史价位就可以了。比方说你下载的是每日开盘价(用每日均价也是可以的),记为S1,S2, S3。。。然后,你需要把这些数字转换成价格日变化率,即(S2-S1)/S1, (S3-S2)/S2,...等等,然后把这组变化率数据导入Eviews, 按下面链接页面的步骤操作就可以,很容易的。
http://perso.fundp.ac.be/~mpetijea/MyEviews/Clips/clip17.html
加油。

⑸ 如何用Arma模型做股票估计

时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。

⑹ 如何用sas对数据进行线性模型预测

楼上说的很对,在sas软件中做回归的步骤中可以对数据进行线性回归测定,你可以根据需要选择。一般情况都是线性回归,很少有问题采用其他回归方式的。希望会对你有帮助!

⑺ 如何用GARCH(1,1)求股票的具体波动率数据

以哈飞股份(600038)为例,运用GARCH(1,1)模型计算股票市场价值的波动率。

GARCH(1,1)模型为:

(1)

(2)

其中, 为回报系数, 为滞后系数, 和 均大于或等于0。

(1)式给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为基础的一期向前预测方差,所以称为条件均值方程。

(2)式给出的方程中: 为常数项, (ARCH项)为用均值方程的残差平方的滞后项, (GARCH项)为上一期的预测方差。此方程又称条件方差方程,说明时间序列条件方差的变化特征。

通过以下六步进行求解:

本文选取哈飞股份2009年全年的股票日收盘价,采用Eviews 6.0的GARCH工具预测股票收益率波动率。具体计算过程如下:

第一步:计算日对数收益率并对样本的日收益率进行基本统计分析,结果如图1和图2。

日收益率采用JP摩根集团的对数收益率概念,计算如下:

其中Si,Si-1分别为第i日和第i-1日股票收盘价。

图1 日收益率的JB统计图

对图1日收益率的JB统计图进行分析可知:

(1)标准正态分布的K值为3,而该股票的收益率曲线表现出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大于正态分布,说明存在着较为明显的“尖峰厚尾”形态;

(2)偏度值与0有一定的差别,序列分布有长的左拖尾,拒绝均值为零的原假设,不属于正态分布的特征;

(3)该股票的收益率的JB统计量大于5%的显著性水平上的临界值5.99,所以可以拒绝其收益分布正态的假设,并初步认定其收益分布呈现“厚尾”特征。

以上分析证明,该股票收益率呈现出非正态的“尖峰厚尾”分布特征,因此利用GARCH模型来对波动率进行拟合具有合理性。

第二步:检验收益序列平稳性

在进行时间序列分析之前,必须先确定其平稳性。从图2日收益序列的路径图来看,有比较明显的大的波动,可以大致判断该序列是一个非平稳时间序列。这还需要严格的统计检验方法来验证,目前流行也是最为普遍应用的检验方法是单位根检验,鉴于ADF有更好的性能,故本文采用ADF方法检验序列的平稳性。

从表1可以看出,检验t统计量的绝对值均大于1%、5%和10%标准下的临界值的绝对值,因此,序列在1%的显著水平下拒绝原假设,不存在单位根,是平稳序列,所以利用GARCH(1,1)模型进行检验是有效的。

图2 日收益序列图

表1ADF单位根检验结果

第三步:检验收益序列相关性

收益序列的自相关函数ACF和偏自相关函数PACF以及Ljung-Box-Pierce Q检验的结果如表3(滞后阶数 =15)。从表4.3可以看出,在大部分时滞上,日收益率序列的自相关函数和偏自相关函数值都很小,均小于0.1,表明收益率序列并不具有自相关性,因此,不需要引入自相关性的描述部分。Ljung-Box-Pierce Q检验的结果也说明日收益率序列不存在明显的序列相关性。

表2自相关检验结果

第四步:建立波动性模型

由于哈飞股份收益率序列为平稳序列,且不存在自相关,根据以上结论,建立如下日收益率方程:

(3)

(4)

第五步:对收益率残差进行ARCH检验

平稳序列的条件方差可能是常数值,此时就不必建立GARCH模型。故在建模前应对收益率的残差序列εt进行ARCH检验,考察其是否存在条件异方差,收益序列残差ARCH检验结果如表3。可以发现,在滞后10阶时,ARCH检验的伴随概率小于显著性水平0.05,拒绝原假设,残差序列存在条件异方差。在条件异方差的理论中,滞后项太多的情况下,适宜采用GARCH(1,1)模型替代ARCH模型,这也说明了使用GARCH(1,1)模型的合理性。

表3日收益率残差ARCH检验结果

第六步:估计GARCH模型参数,并检验

建立GARCH(1,1)模型,并得到参数估计和检验结果如表4。其中,RESID(-1)^2表示GARCH模型中的参数α,GARCH(-1)表示GARCH模型中的参数β,根据约束条件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,满足约束条件。同时模型中的AIC和SC值比较小,可以认为该模型较好地拟合了数据。

表4日收益率波动率的GARCH(1,1)模型的参数估计

⑻ 基于时间序列分析的股票价格优势趋势预测的sas的程序

如果你指的是momentum,即动量交易的话,这个是一个搞金融学asset pricing常用的方法,你可以去找这方面的文献,有告诉你怎么编程思路的。我们有这样的程序,但是除非是研究合作,不可能共享出来的。

⑼ 如何用garch模型 预测出今后一个月的股票价格啊

模型在中国不行,国外的可以但也并不稳定,主要都是操盘手作怪

⑽ garch模型能预测股票价格波动率吗

我认为不大可能