1. 碳素纤维的用途
用途 航天/船舰 工业/汽车 运动器材
国家及用途比例:
美国 74.40% 13.60% 12.10%
日本 4.00% 33.60% 62.40%
碳素纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。
碳素纤维是军民两用新材料,属于技术密集型和政治敏感的关键材料。以前,以美国为首的巴黎统筹委员会(COCOM), 对当时的社会主义国家实行禁运封锁政策,1994年3月,COCOM虽然已解散,但禁运封锁的阴影仍笼罩在上空,先进的碳纤维技术仍引不进来,特别是高性能PAN基原丝技术,即使我国进入WTO,形势也不会发生大的变化。因此,除了国人继续自力更生发展碳纤维工业外,别无其它选择。因此,国外尤其是碳纤维生产技术领先的日韩等国对中国的碳纤维材料及制品的出口一直保持相当谨慎的态度,只有为数很少的中国企业能够与其建立合作关系,拥有其产品的进口渠道。
目前世界碳素纤维产量达到4万吨/年以上,全世界主要是日本东丽、东邦人造丝和三菱人造丝三家公司以及美国的HEXCEL、ZOLTEK、ALDILA三家公司,以及德国SGL西格里集团,韩国泰光产业,我国台湾省的台塑集团,等少数单位掌握了碳纤维生产的核心技术,并且有规模化大生产。目前在祖国大陆还没有一个年产100t的规模化碳纤维工厂,大多还处于中试放大阶段。值得一提的是我国台湾省的台塑集团,在80代年中期从美国Hitco公司引进百吨级碳纤维生产线,经消化、吸收和配套后得到迅速发展,台塑产量增加很快,但碳纤维质量的提高幅度并不大。
我国对碳素纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩。进入21世纪以来发展较快,安徽华皖碳纤维公司率先引进了500吨/年原丝、200吨/年PAN基碳纤维(只有东丽碳纤维T300水平),使我国碳纤维工业进入了产业化。随后,一些厂家相继加入碳纤维生产行列。据不完全统计,目前,我国已有12家生产规模大小不一(5~800吨/年)的PAN基碳纤维生产厂家,合计生产能力为1310吨/年,产品规格为1K、3K、6K、12K。但由于一些企业没有原丝可烧,实际国内碳纤维的总产量不足40吨/年,而且产品质量不太稳定,大多数达不到T300水平。可喜的是从2000年开始我国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。目前利用自主技术研制的少数国产T300、T700碳纤维产品已经达到国际同类产品水平。
随着近年来我国对碳素纤维的需求量日益增长,碳纤维已被列为国家化纤行业重点扶持的新产品,成为国内新材料行业研发的热点。据不完全统计,目前拟建和在建的碳纤维生产企业有11家,合计生产能力为原丝7100吨/年、碳纤维1560吨/年,其中在建企业为4家,合计生产能力为原丝1100吨/年、碳纤维470吨/年。
尽管我国碳纤维生产发展缓慢,而消费量却一直在逐渐增加,市场需求旺盛。主要用途包括体育器材、一般工业和航空航天等,其中体育休闲用品的使用量最大,占消费量的约80%~90%。我国碳纤维的需求量已超过3000吨/年,2010年将突破5000吨/年。主要应用领域为:成熟市场有航空航天及国防领域(飞机、火箭、导弹、卫星、雷达等)和体育休闲用品(高尔夫球杆、渔具、网球拍、羽毛球拍、箭杆、自行车、赛艇等);新兴市场有增强塑料、压力容器、建筑加固、风力发电、摩擦材料、钻井平台等;待开发市场有汽车、医疗器械、新能源等。
我国碳纤维复合材料的研制开始于20世纪70年代中期,经过近40年的发展,已取得了长足进展,在航天主导产品(弹、箭、星、船)上得到了广泛应用。近年来,我国体育休闲用品及压力容器等领域对碳纤维的需求迅速增长,航空航天技术的快速发展急需高性能碳纤维及其复合材料等,市场需求更加旺盛。
为了满足国内市场对碳纤维不断增长的需求,应尽快实现我国碳纤维工业的国产化和规模化。为此,必须加快技术创新,掌握核心技术;加速原丝技术开发,研制高纯度原丝;强化应用研究和市场开发,进一步扩大应用领域。碳纤维在我国大有发展前途,但应总结涤纶等化纤发展的经验教训,避免盲目发展,实现健康发展。
为了大型飞机的制造和航空航天事业的发展,我国还必须尽快地实现高强中模型碳纤维的产业化。但是,因为高性能碳纤维是发展航空航天等尖端技术必不可少的材料,长期受到以美国为首的巴黎统筹委员会的封锁。虽然“巴统”在1994年3月解散了,但禁运的阴影仍然存在。即使对我国解除了禁运,开始也只能是通用级碳纤维,而不会向我们出售高性能碳纤维技术和设备。因此,发展高性能碳纤维必须要靠我们自己。我国化学纤维工业“十一·五”发展规划中提出了“从以增加数量为主转向大力发展高新技术纤维”,特别是把事关国家产业安全的高新技术纤维材料作为重中之重,而且碳纤维被列为首位,是国家迫切需要短期内突破的高新技术纤维品种,为我国碳纤维的发展创造了条件,我们要抓住这一机遇,自力更生、努力创新,发展具有自己知识产权的碳纤维,以满足不断增长的市场需求。国家“863 计划”以及有关部委都在关心我国碳纤维工业的发展及其产业化步伐,并给予强有力的支持,许多材料专家也扎扎实实的做了许多工作。“十一五”期间,我国又启动了相关“973计划”。相信“十一五”将是我国碳纤维工业产业化的黄金时代。
2. 碳纤维的特点
碳纤维的特点:
碳纤维是含炭量在90%以上的高强度高模量纤维。耐高温居所有化纤之首。用腈纶和粘胶纤维做原料,经高温氧化碳化而成。是制造航天航空等高技术器材的优良材料。
具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性 外形呈纤维状、柔软、可加工成各种织物,由于其石墨微晶结构沿纤维轴择优取向,因此沿纤维轴方向有很高的强度和模量。
碳纤维的密度小,因此比强度和比模量高。碳纤维的主要用途是作为增强材料与树脂、金属、陶瓷及炭等复合,制造先进复合材料。碳纤维增强环氧树脂复合材料,其比强度及比模量在现有工程材料中是最高的。
(2)西格里集团股票扩展阅读:
碳纤维用途:
碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。
碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。
随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。
3. 材料一,据不完全统计,我国每年有57000
应该是:碳素纤维
碳素纤维的学名叫“聚丙烯晴基碳纤维”由碳纤维与相关的基体树脂(如环氧树脂)备制的复合材料其多项物理力学性能可以与金属媲美。由于它特有的耐高温(>3000℃),耐烧蚀,热膨胀系数小,及高比强度、高比摸量等特性,广泛应用于航天、航空、化工、电子及体育器材等领域。
碳素纤维又称碳纤维(Carbon Fiber,简称CF)。在国际上被誉为“黑色黄金”,它继石器和钢铁等金属后,被国际上称之为“第三代材料”,因为用碳纤维制成的复合材料具有极高的强度,且超轻、耐高温高压。
碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。
碳素纤维每年虽呈小幅成长,但仍具稳定之特殊固定市场性与用途需求性。碳素纤维之用途依国家不同而异,美国主要发展用于国防与航天,而日本则用于运动休闲器材,在未来预期在环保用途将会大幅成长。碳素纤维依产品设计与结合特殊他种材料会展开另一新纪元。
5.碳纤维之主要用途
碳素纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。
碳素纤维是军民两用新材料,属于技术密集型和政治敏感的关键材料。以前,以美国为首的巴黎统筹委员会(COCOM), 对当时的社会主义国家实行禁运封锁政策,1994年3月,COCOM虽然已解散,但禁运封锁的阴影仍笼罩在上空,先进的碳纤维技术仍引不进来,特别是高性能PAN基原丝技术,即使我国进入WTO,形势也不会发生大的变化。因此,除了国人继续自力更生发展碳纤维工业外,别无其它选择。因此,国外尤其是碳纤维生产技术领先的日韩等国对中国的碳纤维材料及制品的出口一直保持相当谨慎的态度,只有为数很少的中国企业能够与其建立合作关系,拥有其产品的进口渠道。
目前世界碳素纤维产量达到4万吨/年以上,全世界主要是日本东丽、东邦人造丝和三菱人造丝三家公司以及美国的HEXCEL、ZOLTEK、ALDILA三家公司,以及德国SGL西格里集团,韩国泰光产业,我国台湾省的台塑集团,等少数单位掌握了碳纤维生产的核心技术,并且有规模化大生产。目前在祖国大陆还没有一个年产100t的规模化碳纤维工厂,大多还处于中试放大阶段。值得一提的是我国台湾省的台塑集团,在80代年中期从美国Hitco公司引进百吨级碳纤维生产线,经消化、吸收和配套后得到迅速发展,台塑产量增加很快,但碳纤维质量的提高幅度并不大。
我国对碳素纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩。进入21世纪以来发展较快,安徽华皖碳纤维公司率先引进了500吨/年原丝、200吨/年PAN基碳纤维(只有东丽碳纤维T300水平),使我国碳纤维工业进入了产业化。随后,一些厂家相继加入碳纤维生产行列。据不完全统计,目前,我国已有12家生产规模大小不一(5~800吨/年)的PAN基碳纤维生产厂家,合计生产能力为1310吨/年,产品规格为1K、3K、6K、12K。
但由于一些企业没有原丝可烧,实际国内碳纤维的总产量不足40吨/年,而且产品质量不太稳定,大多数达不到T300水平。可喜的是从2000年开始我国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。目前利用自主技术研制的少数国产T300、T700碳纤维产品已经达到国际同类产品水平。
随着近年来我国对碳素纤维的需求量日益增长,碳纤维已被列为国家化纤行业重点扶持的新产品,成为国内新材料行业研发的热点。据不完全统计,目前拟建和在建的碳纤维生产企业有11家,合计生产能力为原丝7100吨/年、碳纤维1560吨/年,其中在建企业为4家,合计生产能力为原丝1100吨/年、碳纤维470吨/年。
尽管我国碳纤维生产发展缓慢,而消费量却一直在逐渐增加,市场需求旺盛。主要用途包括体育器材、一般工业和航空航天等,其中体育休闲用品的使用量最大,占消费量的约80%~90%。我国碳纤维的需求量已超过3000吨/年,2010年将突破5000吨/年。主要应用领域为:成熟市场有航空航天及国防领域(飞机、火箭、导弹、卫星、雷达等)和体育休闲用品(高尔夫球杆、渔具、网球拍、羽毛球拍、箭杆、自行车、赛艇等);新兴市场有增强塑料、压力容器、建筑加固、风力发电、摩擦材料、钻井平台等;待开发市场有汽车、医疗器械、新能源等。
我国碳纤维复合材料的研制开始于20世纪70年代中期,经过近40年的发展,已取得了长足进展,在航天主导产品(弹、箭、星、船)上得到了广泛应用。近年来,我国体育休闲用品及压力容器等领域对碳纤维的需求迅速增长,航空航天技术的快速发展急需高性能碳纤维及其复合材料等,市场需求更加旺盛。
为了满足国内市场对碳纤维不断增长的需求,应尽快实现我国碳纤维工业的国产化和规模化。为此,必须加快技术创新,掌握核心技术;加速原丝技术开发,研制高纯度原丝;强化应用研究和市场开发,进一步扩大应用领域。碳纤维在我国大有发展前途,但应总结涤纶等化纤发展的经验教训,避免盲目发展,实现健康发展。
为了大型飞机的制造和航空航天事业的发展,我国还必须尽快地实现高强中模型碳纤维的产业化。但是,因为高性能碳纤维是发展航空航天等尖端技术必不可少的材料,长期受到以美国为首的巴黎统筹委员会的封锁。虽然“巴统”在1994年3月解散了,但禁运的阴影仍然存在。即使对我国解除了禁运,开始也只能是通用级碳纤维,而不会向我们出售高性能碳纤维技术和设备。
因此,发展高性能碳纤维必须要靠我们自己。我国化学纤维工业“十一·五”发展规划中提出了“从以增加数量为主转向大力发展高新技术纤维”,特别是把事关国家产业安全的高新技术纤维材料作为重中之重,而且碳纤维被列为首位,是国家迫切需要短期内突破的高新技术纤维品种,为我国碳纤维的发展创造了条件,我们要抓住这一机遇,自力更生、努力创新,发展具有自己知识产权的碳纤维,以满足不断增长的市场需求。国家“863 计划”以及有关部委都在关心我国碳纤维工业的发展及其产业化步伐,并给予强有力的支持,许多材料专家也扎扎实实的做了许多工作。“十一五”期间,我国又启动了相关“973计划”。相信“十一五”将是我国碳纤维工业产业化的黄金时代。
4. 国际复合材料展览会
老大,这个展会今年已经结束好长时间了,我记得好像是在2010年的9月23号,好象是的,展会为期3天,你很关注这个展会吗?http://www.chinacompositesexpo.com/cn/index.这个网址给你,可以了解一下。
我是做展览会设计和搭建的,所以才知道这个展会的存在,今年我做过“华东理工大学华昌聚合物有限公司”和“西格里集团”的展台,可以在网页上面收索一下,应该可以看到照片的。
5. 西格里特种石墨(上海)有限公司怎么样
简介:西格里特种石墨(上海)有限公司是西格里集团在上海奉贤工业综合开发区投资的独资企业。公司主要提供碳电极、阴极和炉内衬等产品及为电子半导体行业、汽车与机械行业、高温行业、其他工业应用领域(比如模具制造,有色金属冶炼等)提供石墨材料、成品与复合材料。西格里特种石墨产品类别包括:等静压、挤压和振动成型石墨(包括灰分含量小于5PPM的高纯化石墨),碳碳复合材料,柔性石墨箔及石墨软毡硬毡等。
法定代表人:BURKHARD STRAUBE
成立时间:2002-09-18
注册资本:2155万美元
工商注册号:310000400316427
企业类型:有限责任公司(外国法人独资)
公司地址:上海市奉贤区环城东路151号
6. 为什么布加迪威龙那么快
布加迪威龙(VEYRON)这个名字源自曾经驾驶布加迪57赢得1939利曼桂冠的Pierre Veyron。而16.4代表16个气缸和4个涡轮增压器。 这款车配备了大众专门研发的W型16缸发动机,可以说是将两台V8发动机共用一根曲轴的产物。此外,该发动机还配备了4个涡轮增压器。排量达到了7993cc。可以迸发出1001匹的最大马力,同时,在极低的1000RPM时即可输出730NM的庞大扭矩,在2200RPM时就可以迸发出1250NM的峰值扭矩,这种扭力会一直持续到5500RPM。 强大的动力带来的结果显而易见:0-100km/h加速:2.5秒,0-200km/h:加速7.3秒,0-300km/h加速:16.7秒,0-400km/h加速:55.6秒。最高时速达到407KM/H。如此优秀的加速成绩还得益于DSG双离合器变速器。这种变速器采用两片离合器,当处于某个档位时,另一片离合器自动与下一个档位相连接,最大限度的缩短了换挡时间,从而提供了迅疾的加速。 另外,这款车还配备了四轮驱动系统,这种四驱系统是类似与应用在兰博基尼和保时捷上的那种采用HALDEX中央差速器的四驱系统。通过电磁感应来控制扭力在前后各个车轮之间的分配,从而使得驾驶更加轻松,操控更加灵敏。 超乎常人想象,虽然布加迪威龙因为豪华装备和车身强度的需要,车重接近2吨,但在TOPGEAR赛道测试中却依然跑出1:18.3 的成绩,超过帕加尼Zonda F 1:18.4 ,玛莎拉蒂MC12 1:18.9 ,法拉利Enzo 1:19.0,Radical SR3 1:19.0 ,兰博基尼LP 670-4 1:19.0 ,Ariel Atom 1:19.5 ,兰博基尼LP560-4 1:19.5 ,保时捷997 GT2 1:19.5 ,法拉利430 Sc 1:19.7 ,日产 GT-R 1:19.7等大量超跑和跑车,这也证明布加迪的操控性十分出色。
7. 为什么布加迪发动机裸露在外
首先声明一个误区:Bugatti veyron 16.4的官方中文名称是叫布加迪威航16.4。布加迪威航是05年大众旗下的布加迪推出的一款超级跑车。
布加迪威航之所以这么快是因为有着先进的技术。威航采用了当今最复杂也是最先进的发动机之一的w16发动机,再配上4个涡轮增压器——即使是像法拉利那样的超跑也只有两个,如此一来,威航能够输出1001/6000以上的功率(根据不同型号,最高可为1200/6400+的功率)以及1250/2200-5500的最大扭矩。而且为了帮助威航散热,工程师们使用了10个散热器以及相当与普通轿车三倍的冷却液,分别用于发动机,空调,机油,变速箱,差速器以及中冷进气系统的散热。车身也使用了碳纤维单体式车身,连螺丝都是用重量仅相当于普通钢材1/3的钛合金材料制造,以此来减轻车重。
而且为了承受极速400+以上的高温,布加迪还特别为威航配置了由米其林制造的pilot sport特种轮胎。而且为了获得更多的抓地力,其后轮达到365/30的尺寸。每条轮胎造价25000美元,刹车系统也配备了由西格里集团制造的特种交叉打孔的碳纤维增强碳化硅复合材料制动盘,而AP Racing则为其提供了轻质铝合金整体式制动卡钳,前轮8个钛合金活塞,后轮则有6个钛合金活塞,从而达到了极高的制动性能。
有了这些技术的支持,当车速超过220km/h时液压系统会驱动后扰流板进入操控模式。从而将车身尾部下压力增大至350kg左右,车速最高可达350km/h,并且再插入另一把极速钥匙,并选择高速模式,这是车身离地间隙会发生变化,扰流板以及前扩散器也会关闭从而降低车身阻力(Cd值会从0.41降至0.36),这时布加迪威航便可以达到400+k/h的极速了。这也便是布加迪的极速之谜了。
8. 碳纤维有多硬
碳纤维材料是一种比普通钢硬度高10倍的超硬材料,仅次于金刚石的硬度。
碳纤维是通过含碳量极高的有机高分子纤维按纤维线束方向堆砌而成,而我们所认知的高硬度,超强的抗剪切力并不是完全由材料特性所带来的。这其中有个决定性因素,那就是临界空隙。纤维与纤维之间的堆砌在低于某个临界值时,之间的纤维孔隙指数会决定纤维的硬度,抗剪切力和抗拉伸力。
引起材料力学性能下降的临界孔隙率是1%-4%。孔隙体积含量在0-4%范围内时,孔隙体积含量每增加1%,层间剪切强度大约降低7%。并且孔隙含量越高,孔隙的尺寸越大,并显著降低了层合板中层间界面的面积。当材料受力时,易沿层间破坏,这也是层间剪切强度对孔隙相对敏感的原因。
(8)西格里集团股票扩展阅读
碳纤维特点:
1、高碳物质
在“铅笔”中H指数越高代表含碳量越高,B越高代表石墨含量越高。用起来H高的自然就硬一些,B高的,自然就消耗快一点。石墨和钻石同属于碳元素构成物质,由于原子构成不同,所以物理特性不同。但是在材料界中有一个共性,那就是含碳物质拥有极高的硬度和抗剪切力。
2、低吸能特性
F1和众多超级跑车将碳纤维用作车体的材料是因为同等体积下的碳纤维比钢铁轻了20%-30%。但是硬度却超过钢铁10左右。因此在F1上很多事故的致死率并非全是由高时速引起的,有些是因为锋利的碳纤维残片能够轻易的切割开头盔护具。
也是因为在硬度上有着极强的表现,在民用量产车中,碳纤维只允许做为加固主体而并非大面积外表件的材料应用。
3、低阻燃率
碳纤维在物理特性的方面虽然很出色,但在某些化学特性上的表现并不是很好。例如抗阻燃方面较差。