⑴ D90 粒径含义
粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。粉体在我们日常生活和工农业生产中的应用非常广泛。如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。所以客观真实地反映粉体的粒度分布是一项非常重要的工作。下面具体讲一下关于粒度测试方面的基知识和基本方法。
一、粒度测试的基本知识
1、颗粒:在一尺寸范围内具有特定形状的几何体。这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。
3、粒度:颗粒的大小叫做颗粒的粒度。
4、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。有区间分布和累计分布两种形式。区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。
5、粒度分布的表示方法:
① 表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。
② 图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。
③ 函数法:用数学函数表示粒度分布的方法。这种方法一般在理论研究时用。如著名的Rosin-Rammler分布就是函数分布。
6、粒径和等效粒径:
粒径就是颗粒直径。这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。
等效粒径是指当一个颗粒的某一物理特性与同质的球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。那么这个球形颗粒的粒径就是该实际颗粒的等效粒径。等效粒径具体有如下几种:
① 等效体积径:与实际颗粒体积相同的球的直径。一般认为激光法所测的直径为等效体积径。
② 等效沉速径:在相同条件下与实际颗粒沉降速度相同的球的直径。沉降法所测的粒径为等效沉速径,又叫Stokes径。
③ 等效电阻径:在相同条件下与实际颗粒产生相同电阻效果的球形颗粒的直径。库尔特法所测的粒径为等效电阻径。
④ 等效投进面积径:与实际颗粒投进面积相同的球形颗粒的直径。显向镜法和图像法所测的粒径大多是等效投影面积直径。
7、表示粒度特性的几个关键指标:
① D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位径或中值粒径。D50常用来表示粉体的平均粒度。
② D97:一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。D97常用来表示粉体粗端的粒度指标。
其它如D16、D90等参数的定义与物理意义与D97相似。
③ 比表面积:单位重量的颗粒的表面积之和。比表面积的单位为m2/kg或cm2/g。比表面积与粒度有一定的关系,粒度越细,比表面积越大,但这种关系并不一定是正比关系。
8、粒度测试的重复性:同一个样品多次测量结果之间的偏差。重复性指标是衡量一个粒度测试仪器和方法好坏的最重要的指标。它的计算方法是:
其中,n为测量次数(一般n>=10);
x i为每次测试结果的典型值(一般为D50值);
x为多次测试结果典型值的平均值;
σ为标准差;
δ为重复性相对误差。
影响粒度测试重复性有仪器和方法本身的因素;样品制备方面的因素;环境与操作
方面的因素等。粒度测试应具有良好的重复性是对仪器和操作人员的基本要求。
9、粒度测试的真实性:
通常的测量仪器都有准确性方面的指标。由于粒度测试的特殊性,通常用真实性来表示准确性方面的含义。由于粒度测试所测得的粒径为等效粒径,对同一个颗粒,不同的等效方法可能会得到不同的等效粒径。
可见,由于测量方法不同,同一个颗粒得到了两个不同的结果。也就是说,一个不规则形状的颗粒,如果用一个数值来表示它的大小时,这个数值不是唯一的,而是有一系列的数值。而每一种测试方法的都是针对颗粒的某一个特定方面进行的,所得到的数值是所有能表示颗粒大小的一系列数值中的一个,所以相同样品用不同的粒度测试方法得到的结果有所不同的是客观原因造成的。颗粒的形状越复杂,不同测试方法的结果相差越大。但这并不意味着粒度测试结果可以漫无边际,而恰恰应具有一定的真实性,就是应比较真实地反映样品的实际粒度分布。真实性目前还没有严格的标准,是一个定性的概念。但有些现象可以做为测试结果真实性好坏的依据。比如仪器对标准样的测量结果应在标称值允许的误差范围内;经粉碎后的样品应比粉粉碎前更细;经分级后的样品的大颗粒含量应减少;结果与行业标准或公认的方法一致等。
二、粒度测试的基本方法
粒度测试的方法很多,具统计有上百种。目前常用的有沉降法、激光法、筛分法、图像法和电阻法五种,另外还有几种在特定行业和领域中常用的测试方法。
1、沉降法:
沉降法是根据不同粒径的颗粒在液体中的沉降速度不同测量粒度分布的一种方法。它的基本过程是把样品放到某种液体中制成一定浓度的悬浮液,悬浮液中的颗粒在重力或离心力作用下将发生沉降。不同粒径颗粒的沉降速度是不同的,大颗粒的沉降速度较快,小颗粒的沉降速度较慢。那么颗粒的沉降速度与粒径有怎样的数量关系,通过什么方式反映颗粒的沉降速度呢?
① Stokes定律:在重力场中,悬浮在液体中的颗粒受重力、浮力和粘滞阻力的作用将发生运动,其运动方程为:
这就是Stokes定律。
从Stokes 定律中我们看到,沉降速度与颗粒直径的平方成正比。比如两个粒径比为1:10的颗粒,其沉降速度之比为1:100,就是说细颗粒的沉降速度要慢很多。为了加快细颗粒的沉降速度,缩短测量时间,现代沉降仪大都引入离心沉降方式。在离心沉降状态下,颗粒的沉降事度与粒度的关系如下:
这就是Stokes定律在离心状态下的表达式。由于离心转速都在数百转以上,离心加速度ω2r远远大于重力加速度g,Vc>>V,所以在粒径相同的条件下,离心沉降的测试时间将大大缩短。
② 比尔定律:
如前所述,沉降法是根据颗粒的沉降速度来测试粒度分布的。但直接测量颗粒的沉降速度是很困难的。所以在实际应用过程中是通过测量不同时刻透过悬浮液光强的变化率来间接地反映颗粒的沉降速度的。那么光强的变化率与粒径之间的关系又是怎样的呢?比尔是律告诉我们:
设在T1、T2、T3、……Ti时刻测得一系列的光强值I1<I2<I3……<Ii,这些光强值对应的颗粒粒径为D1>D2>D3>……>Di,将这些光强值和粒径值代入式(5),再通过计算机处理就可以得到粒度分布了。
2、激光法:
激光法是根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。由激光器的发生的激光,经扩束后成为一束直径为10mm左右的平行光。在没有颗粒的情况下该平行光通过富氏透镜后汇聚到后焦平面上。如下图所示:
当通过适当的方式将一定量的颗粒均匀地放置到平行光束中时,平行光将发生散现象。一部分光将与光轴成一定角度向外传播。如下图:
那么,散射现象与粒径之间有什么关系呢?理论和实验都证明:大颗粒引发的散射光的角度小,颗粒越小,散光与轴之间的角度就越大。这些不同角度的散射光通过富姓氏透镜后在焦平面上将形成一系列有不同半径的光环,由这些光环组成的明暗交替的光斑称为Airy斑。Airy斑中包含着丰富粒度信息,简单地理解就是半径大的光环对应着较小的粒径;半径小的光环对应着较大的粒径;不同半径的光环光的强弱,包含该粒径颗粒的数量信息。这样我们在焦平面上放置一系列的光电接收器,将由不同粒径颗粒散射的光信号转换成电信号,并传输到计算机中,通过米氏散理论对这些信号进行数学处理,就可以得到粒度分布了。
3、筛分法:
筛分法是一种最传统的粒度测试方法。它是使颗粒通过不同尺寸的筛孔来测试粒度的。筛分法分干筛和湿筛两种形式,可以用单个筛子来控制单一粒径颗粒的通过率,也可以用多个筛子叠加起来同时测量多个粒径颗粒的通过率,并计算出百分数。筛分法有手工筛、振动筛、负压筛、全自动筛等多种方式。颗粒能否通过筛几与颗粒的取向和筛分时间等素因素有关,不同的行业有各自的筛分方法标准。
4、电阻法:
电阻法又叫库尔特法,是由美国一个叫库尔特的人发明的一种粒度测试方法。这种方法是根据颗粒在通过一个小微孔的瞬间,占据了小微孔中的部分空间而排开了小微孔中的导电液体,使小微孔两端的电阻发生变化的原理测试粒度分布的。小孔两端的电阻的大小与颗粒的体积成正比。当不同大小的粒径颗粒连续通过小微孔时,小微孔的两端将连续产生不同大小的电阻信号,通过计算机对这些电阻信号进行处理就可以得到粒度分布了。如图所示:
用库尔特法进行粒度测试所用的介质通常是导电性能较好的生理盐水。
5、显微图像法:
显微图像法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒的投影面积,根据等效投影面积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了。
由于这种方法单次所测到的颗粒个数较少,对同一个样品可以通过更换视场的方法进行多次测量来提高测试结果的真实性。除了进行粒度测试之外,显微图像法还常用来观察和测试颗粒的形貌。
6、其它颗粒度测试方法:
除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。
(1) 刮板法:把样品刮到一个平板的表面上,观察粗糙度,以此来评价样品的粒度是否合格。此法是涂料行业采用的一种方法。是一个定性的粒度测试方法。
(2) 沉降瓶法:它的原理与前后讲的沉降法原理大致相同。测试过程是首先将一定量的样品与液体在500ml或1000l的量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品的总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定的时刻分别放出相同量的悬浮液,来代表该时刻对应的粒径。将每个时刻得到的悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。
(3) 透气法:透气法也叫弗氏法。先将样品装到一个金属管里并压实,将这个金属管安装到一个气路里形成一个闭环气路。当气路中的气体流动时,气体将从颗粒的缝隙中穿过。如果样品较粗,颗粒之间的缝隙就大,气体流边所受的阻碍就小;样品较细,颗粒之间的缝隙就小,气体流动所受的阻碍就大。透气法就是根据这样一个原理来测试粒度的。这种方法只能得到一个平均粒度值,不能测量粒度分布。这种方法主要用在磁性材料行业。
(4) 超声波法:通过不同粒径颗粒对超声波产生不同的影响的原理来测量粒度分布的一种方法。它可以直接测试固液比达到70%的高浓度浆料。这种方法是一种新的技术,目前国内外都有人进行研究,据说国外已经有了仪器,国内目前还没有。
(5) 动态光散射法:前面所讲的激光散射法可以理解为静态光散射法。当颗粒小到一定的程度时,颗粒在液体中受布朗运动的影响,呈一种随机的运动状态,其运动距离与运动速度与颗粒的大小有关。通过相关技术来识别这些颗粒的运动状态,就可以得到粒度分布了。动态光散射法,主要用来测量纳米材料的粒度分布。国外已有现成的仪器,国内目前还没有。
三、粒度测试技术的现状和发展趋势
我国粒度测试技术研究工作起步于70年代。在80年代初成立了中国颗粒学会,由中国科学院院士郭慕孙教授担任理事长,下设颗粒制备、颗粒测试、气溶胶、纳米材料等专业委员会等。颗粒学会的成立不仅对颗粒测试技术的研究起到了促进作用,还推动了产业化的进程,之后陆续有国产的粒度仪投放市场。经过近20年的发展,目前粒度仪器的生产厂家有十余家,2002年产销量预计达 500台套以上,国产粒度仪的市场占有率在80%以上。不仅结束了80年代以前粒度仪器几乎全部依赖进口的历史,还有一定量的出口。国产粒度仪的主要性能指标达到了国外90年代初中期水平。
国内主要粒度仪生产厂家及代表仪器有:
序号 厂家名称 代表仪器
1 丹东市百特仪器有限公司 BT-9300激光粒度仪BT-1500离心沉降粒度仪BT-2000扫描沉降式粒度仪BT-3000圆盘超细粒度仪
2 济南微纳仪器公司 JL9300激光粒度仪Winner2000激光粒度仪Winner99图像仪
3 南京化工大学 便携式沉降粒度仪
4 珠海欧美克仪器有限公司 LS800激光粒度仪LS-POPⅢ激光粒度仪电阻法粒度仪图像法粒度仪
5 四川精新仪器有限公司 JL-1155激光粒度仪JL-1166激光粒度仪LX-2000图像粒度仪
6 南京地理与湖泊研究所 全自动振筛机
7 天津大学 激光滴谱仪(测液体雾滴)
8 上海理工大学 激光粒度仪
国外部分粒度仪器生产厂家及仪器:
序号 厂家名称 仪器型号
1 英国马尔文公司 Mastersizer2000等系列激光仪(测试范围0.02-2000um)动态光散射粒度仪(测试范围3-3000ns)
2 美国贝克曼库尔特公司 LS100等系列激光粒度仪(测试范围0.04-2000um)动态光散射粒度仪(测试范围3-3000ns)库尔特计数器等
3 美国麦克公司 X光沉降粒度仪(如SediGraph5100型等)
4 美国布鲁克海文公司 圆盘沉降粒度仪等(测试下限达0.01um)
5 德国飞驰公司 激光粒度仪等(干法、湿法)
6 日本岛津公司 激光粒度仪、离心沉降仪等
7 日本掘场公司 激光粒度仪、离心沉降仪等
8 日本清新公司 激光仪、离心沉降仪等
9 法国激光公司 激光粒度仪等
与国外先进粒度仪相比,国产仪器还存在测试范围偏小,制造工艺水平较低,自动化智能化水平不高,纳米粒度仪和在线等专用粒度仪还是空白等不足。
当前,我国粉体工业正处在蓬勃发展的时期,对粒度测试仪器的需求急剧增长。而且中国已经加入了WTO,国外的市场也正在逐步打开。我国改革开放20年来,颗粒测试技术从无到有,已经取得了长足的进步,证明我们具备更大的发展基础和潜力。只要在技术方面不断有所突破,有所创新,加上我们有相对低廉的价格,我们完全有条件成为粒度仪器的制造大国和强国。不仅可以满足国内的需要,还可以大量出口。那么,我们应该从那些方面进行改进呢?我认为要做好以下几个方面的工作:
1.尽快培养一大批粒度测试方面的专业人才。
2.加强基础研究,包括基础理论研究和应用方面研究。
3.密切关注国外的技术发展动向,积极利用国外的的最新研究成果。
4.建立各种粒度仪的国家标准和配套的标准样品。
5.充分利用其他领域的新技术、新工艺提高粒度测试仪器的整体水平。
⑵ 马尔文公司的Mastersizer 3000 超高速智能粒度分析仪国内买的到么
Mastersizer 3000 可是今年才出不久的最新型粒度仪啊,国内没有卖的,我就在前两天的红方块科博会上看到了,还是非卖品,楼主你就先等等吧,再有就是多看看中国科学仪器采购网,如果国内能买到的话基本就会在那上出现。
⑶ 急,请问谁知道马尔文公司生产的激光粒度分析仪mastersizer2000型目前的市场价格大概是多少万元人民币/台
80万----100万
⑷ 国内流变仪的知名企业
国内流产仪可以找广州来美的CP5000,性能接近进口的了,可以替代进口的,尤其是他们温控系统和升降支架非常好用
⑸ 电声法与电泳法测Zeta电位的相同和不同之处
基于电声法原理研制了一种能同时用于胶体声阻抗和Zeta电位测量的电声探头,建立了一套测量胶体Zeta电位的实验装置,多次实验证明设备稳定性良好.通过多次回波测量声阻抗计算Zeta电位,测得纳米黄土及TiO2胶体的Zeta电位分别为-52.69和-16.09mV,分析了5%~30%(ψ)SiO2胶体的Zeta电位变化趋势,表明该方法可用于高浓度胶体测量,与马尔文公司光脉动Zeta电位测量仪测量结果偏差较小.本方法有望实现在线测量Zeta电位.
⑹ 南海北部DSH-1C柱状样晚更新世以来沉积物磁性特征及其环境意义
罗祎1,苏新,陈芳2,黄永样2
罗祎(1982-),女,博士研究生,主要从事海洋地质方面研究,E-mail:[email protected]。
1.中国地质大学海洋学院,北京100083
2.广州海洋地质调查局,广州510760
摘要:对取自南海北部陆坡“海洋四号沉积体”DSH-1C柱状样进行了沉积学和磁学分析,结合相关资料探讨了该柱状样沉积物磁性特征其纵向变化,及其与该区沉积环境变化的关系。结果表明:DSH-1C柱状样自上而下共划分3个岩性单元,表层沉积物为全新世MIS1期以黏土质粉砂为主的深海-半深海沉积;中部含数层重力流沉积夹层,为晚更新世MIS2期沉积;底部为晚更新世MIS3期黏土质粉砂。该柱状样x值平均值为1.72×10-7m3/kg。所有样品的IRM 均已达到SIRM的80%以上,S300的最小值为0.605。该柱状样沉积物中的磁性矿物极少,以低矫顽力矿物为主;该柱状样磁性特征在陆源物质输入较多的间冰期(MIS1和MIS3期),磁性参数值较高;反之,在MIS2磁性参数值较低,可能与冰期该区陆源物质减少有关。此外,该岩心柱中富含有孔虫壳体或双壳碎屑的重力流层沉积物的磁性参数值低,与这些逆磁性碳酸盐组分的增加有关。
关键词:磁性特征;粒度分析;晚更新世;东沙;南海
The Magnetic Properties of Late Pleistocene Sediments in Core DSH-1 C from Northern South China Sea and Their Environment Significance
Luo Yi1,Su Xin1,Chen Fang2,H uan Yongyang2
1.School of Ocean Sciences,China University of Geosciences,Beijing 100083,China
2.Guangzhou Marine Geological Survey,Guangzhou 510760,China
Abstract:A study of magnetic properties of sediments at the piston core DSH-1C from deep sea area of Dongsha,the South China Sea was carried out.The 626cm-core were subdivided into three lithologic units:Holocene clayey silt (Unit I,MISl) at the top interval of the core; late Pleistocene turbidity sequences characterized by 3 to 4 major sand layers in the middle interval(Unit Ⅱ,MIS2) ; and then the lowest sequences composed by clayey silt interbedded with thin silty sand or silt layers (Unit Ⅲ,MIS 3)..The average value of the Xfor the sediments is 1.72×10-7m3/kg,and all samples show high values of IRM,over 80‰f sediment SIRM,while the minimum of S300for all samples is 0.605.According to magnetic properties obtained,it was inferred that sediments from the core contained very rare magnetic minerals.Lowest values of magnetic properties (X,NRM and SIRM) were observed in the intervals of Unit Ⅱ,where turbidity layers containing abundant calcareous foraminifera shells occurred,indicating the dilution of carbonate in these sediment layers.On the other hand,higher values those parameters were seen in the interglacial period (MIS l and MIS3) ,probably e to more terrigenous debris input ring warm periods in this area.
Key word:magnetic properties ; grain size;late Pleistocene; Dongsha area; South China Sea
0 引言
环境磁学自20世纪80年代确立至今逐渐形成了一门以磁性测量为核心手段,磁性矿物为载体,利用磁学的方法去研究环境作用、环境过程和环境问题的新兴交叉学科[1-3]。海洋沉积物的环境磁学研究亦已成为近年来研究的热点。在这一领域国内外学者通过对深海岩心沉积物或浅表沉积物磁学特征的研究,结合年代学、沉积学和地球化学等资料,研究沉积物的来源及沉积环境的变化,去重建古气候和古环境[1-6]。
当前,在对海洋沉积物的磁学特征的研究中,沉积物磁化率的变化可以反映物源和环境的改变已经得到普遍的认同及应用。其他磁性参数(如:天然剩磁、等温剩磁、非磁滞剩磁等)也逐渐被引入到海洋沉积物的矿物学、古地磁学、次生变化及成岩过程等的研究中[4-12]。不仅如此,近年来国外学者在对海洋天然气水合物的研究中,探讨了水合物赋存区沉积物的磁性参数(主要以磁化率为代表)及其与自生矿物(主要以黄铁矿为代表)的关系[13-15]。
本文为首次在南海水合物赋存区进行柱状岩心沉积物的磁性研究。将利用环境磁学和沉积学方法,通过对来自南海北部水合物赋存区获得的DSH-1C重力柱状样沉积物的磁性特征及其沉积环境的对比研究,来探讨该研究区表层沉积物的磁性参数变化的因素及其与沉积环境变化的关系,希望通过以上研究获得该研究区表层沉积物的磁性特征及其环境意义。
1 样品与方法
1.1 样品来源
DSH-1C保压重力活塞柱状样全柱长626 cm,由2006年“海洋四号”科考船取自南海北部陆坡,东沙海域“海洋四号沉积体”气体水合物调查区,水深3 000 m。该区冷泉活动的证据首先由“海洋四号”科考船发现,2004年中德合作SO177航次“太阳号”科考船对“南海北部陆坡甲烷和天然气气体水合物分布、形成及其对环境的影响研究”的调查获得更多证据,并命名为“海洋四号”沉积体[16-17]。
该区位于南海北部陆坡东部,台湾海峡北岸,构造上属于被动大陆边缘,毗邻台湾岛西南的外滨增生楔。水深在1 500~3 000 m之间,平均水深大于2 500 m[16](图1)。
研究区海底具有强似海底反射层(BSR)的地震反射特征。在海底电视对海底的调查中,发现该区有深水冷泉双壳类、菌席。对SO177航次GC10站位[16](图1)的岩心描述中提到该区沉积物中有因甲烷气体胀气形成的裂隙结构。其孔隙水地球化学分析结果也在一些深度表现出孔隙水氯离子异常等地球化学特征,并由甲烷通量推测该站位深部存在甲烷源。
图1 南海北部陆坡“海洋四号沉积体”水深图及DSH-1C、SO177-GC10站位示意图
1.2 研究方法
对DSH-1C柱状样描述其岩性特征、照相后,按10 cm间隔取样,取样厚度为2 cm,得到共计63份沉积物样品,对其进行了磁学、粒度和碳酸盐含量测试。
1.2.1 岩石磁学方法
对DSH-1C柱状样的磁学参数进行了磁化率(X)、天然剩磁(NRM)、非磁滞剩磁(ARM)、等温剩磁(IRM)及饱和等温剩磁(SIRM)的测试。
所邻近的SO177-GC10柱状样已有对有孔虫AMS14C年龄的测试结果[16],其底部年龄为50~60 ka,属于布容正极性期,因此未对DSH-1C柱状样的磁倾角方向进行考虑。环境磁学样品直接用无磁性立方盒封装,并对所有样品进行低温烘干(小于40℃)。
(1)磁化率测量在中国地质大学(北京)地学实验中心进行,利用KLY-4S卡帕桥磁化率仪测得全部样品的质量磁化率。
(2)样品剩磁及退磁参数测量均在中国科学院地质与地球物理研究所古地磁实验室进行。2G-755R岩石超导磁力仪上完成,对所有样品进行天然剩磁测量,然后进行退磁。仪器测量范围2.0×10-12~2.0×10-4Am2;灵敏度1.0×10-12 Am2。除490cm处样品测量值为2.37×10-4Am2超出量程仅作参考,320cm处由于电脑故障测量值未被保存外,其余61份样品测量值最小值为1.36×10-6Am2,最大值为1.18×10-4Am2,为可信值。一般的海洋沉积物样品经过15~25 m T的交变退磁,即可获得特征剩磁,故选择0、5、10、15、20、25、30、40、50、60、70m T的退磁步骤。240 cm和320 cm处由于电脑故障测量值未被保存外,获得61份样品的特征剩磁。
(3)应用2G-760超导磁力仪,在外加90 m T交变场叠置0.1 m T的直流场下测定样品的非磁滞剩磁。仪器测量范围1.0×10-7~1.0×10-2Am2;灵敏度2.0×10-12Am2。全部样品测量值最小值为3.96×10-5Am2,最大值为2.68×10-3Am2,为可信值。
(4)为保证对样品饱和等温剩磁的测量值在2G-760超导磁力仪量程范围内,对测量样品质量进行缩减。用Model660 Pulse Magnetizer在1.7 T磁场下进行磁化,后在2G-760超导磁力仪上测量饱和等温剩磁。全部样品测量值最小值为1.38× 10-4Am2,最大值为9.08×10-3Am2,为可信值。将样品置于100、300 m T的反向磁场中磁化得到全部样品的等温剩磁(IRM-100、IRM-300)。
定义S300=(-IRM-300)/SIRM,计算得到S300。
1.2.2 粒度分析
粒度测试在中国地质大学(北京)海洋学院利用英国马尔文公司Mastersize2000型激光粒度仪进行测试。本文样品没有进行有机质和钙质组分的去除,希望得到沉积物全部碎屑的粒度特征,所以进行了全粒级的粒度分析。方法为:取2 g左右待测样品放入20 m L的烧杯中加入适量蒸馏水浸泡,使其在自然状态下分散。测试前加入0.5 mol/L的六偏磷酸钠溶液进行化学分散,测试中未进行超声处理。
1.2.3 碳酸盐含量测试
碳酸盐含量测试也在中国地质大学(北京)海洋学院利用容量法测试。因部分样品含有较多钙质生物壳体,为保证样品测定的准确性,每份样品至少取3份进行平行测定。
2 结果与讨论
2.1 岩性及粒度特征
DSH-1C柱状样沉积物的主要岩性为灰绿色黏土质粉砂,中间夹有数层富含有孔虫及生物碎屑的粗粒粉砂质夹层,部分层位夹有灰黄色或灰黑色细层,黏性较大,下部有皲裂现象和气胀孔结构。根据岩性和粒度变化可将该岩心自上而下分为3个岩性单元(Ⅰ-Ⅲ) ( 图2)。
图2 DSH-1C柱状样沉积物粒度分析结果
岩性单元I(0~约152 cm)为含有孔虫粉砂,砂粒组分中含有较多的有孔虫,因此与碳酸盐含量变化对应。岩性单元Ⅱ(约152~470 cm)以富含大量生物碎屑(双壳、腹足等壳体)及有孔虫砂黏土质粉砂为主要特征。砂层及黏土质粉砂层交替。岩性单元Ⅲ(约470~620 cm)为含深灰黑色粉砂质夹层的黏土质粉砂。沉积物中钙质组分相对较低,也较稳定。
2.2 年代确定
表1 SO177-GC10浮游有孔虫AMS14C年龄数据[16-17]
图3 DSH-1C与SO177-GC10柱状样岩性、粒度分析、对比曲线图(左图据文献[17])
采用SO177航次在“海洋四号”沉积体获得的GC10表层柱状沉积物样浮游有孔虫AMS14C年龄数据(表1)[16-17]。据Zhang等[17]研究,GC10柱状样的3个岩性单元(图3左图),上部为全新统沉积,中部和下部为更新统顶部沉积。两者分界以富含有孔虫和生物碎屑层末次出现为标志。通过与GC10进行对比可以得出:DSH-1C柱状样沉积物在约152 cm深度下部富含有孔虫和生物碎屑砂的首次出现为标志。152 cm之上为全新统沉积,之下为更新统顶部沉积(图3)。其中岩性单元Ⅱ为末次冰期MIS2时期的沉积,而岩性单元Ⅲ为MIS3时期的沉积。
2.3 磁学结果
图4为DSH-1C柱状样磁学参数测试结果随深度变化的曲线图,其中X、NRM、ARM和SIRM记录天然物质的磁性变化与沉积物中磁性矿物的含量、种类、粒度等相关。一般来说,通过计算得到S300的大小与沉积物中中低矫顽力磁性矿物和高矫顽力磁性矿物的相对含量呈正比例关系[18]。本文主要探讨DSH-1C柱状样沉积物中磁性矿物的含量变化。
根据测试结果,结合其岩性特征,可将DSH-1C柱状样的磁学参数特征分为Ⅰ(0~152 cm)、Ⅱ(152~470 cm)、Ⅲ(470~626 cm)3段。
图4 DSH-1C柱状样磁学参数(X、NRM、ARM、SIRM和S300)随深度变化图
Ⅰ段(0~152 cm):该深度段X的变化范围为(2.37~4.84)×10-7m3/kg,波动幅度较大且随深度的增加而降低。NRM、ARM和SIRM数值曲线特征与X变化趋势相一致。此深度段样品的S300在0.925~1.00变化。
Ⅱ段(152~470cm):该深度段X、NRM、ARM和SIRM平均值明显降低,整体数值趋于平稳。X平均值为1.10×10-7m3/kg。ARM平均值在1.17×10-7Am2/kg,比上一段减少87.6%。SIRM平均值为6.54×10-6Am2/kg,比上一段平均值减少57.5%。此段S300波动幅度大,全柱最小值0.605出现在330cm。
Ⅲ段(470~626cm):X、NRM、ARM 和SIRM 数值相对上一段升高,有明显波动。全柱最大值出现在490 cm处,其X、NRM、ARM 及SIRM 均显示为最大值。S300与上两段明显不同,变化幅度很小,呈稳定趋势。
由于天然物质的磁化率主要取决于其中磁性矿物的含量,如果亚铁磁性矿物含量很少,磁化率则非常弱。主要是顺磁性矿物乃至逆磁性矿物对磁化率做出的实际贡献[1-2]。综合3个深度段, DSH-1C柱状样X值最大值仅为6.02×10-7m3/kg,平均值为1.72×10-7m3/kg。可见该柱状样沉积物中磁性矿物含量极少。
天然样品S300,低矫顽力磁性矿物(如磁铁矿)其值接近于1,高矫顽力磁性矿物(如赤铁矿)其值则低于0.5[9,18]。DSH-1C柱状样S300的最小值为0.605,并且所有样品在300 T外加磁场下获得的IRM均已达到SIRM的80%以上。由此该柱状样沉积物中以低矫顽力的软磁性矿物为主。
此外,该柱状样沉积物X、NRM、ARM 和SIRM随深度具有相同的变化趋势,以上这些特征表明磁性矿物的含量是该研究区沉积物磁性特征的主要影响因素。
2.4 磁性特征及其环境意义
本文选取磁性参数X和S300,结合已得到的沉积特征和古海洋学结果进行对比分析(图5)。
图5 DSH-1C柱状样x、S300、黏土体积分数和碳酸盐体积分数随深度变化图
2.4.1 磁性参数的变化
磁化率为代表的海洋沉积物的磁性参数受多种因素的影响。已经得知本文研究区沉积物磁性特征主要受到磁性矿物含量的影响。总体趋势来看,岩性单元Ⅰ和Ⅲ区间内沉积物的磁性矿物含量要高于岩性单元Ⅱ内沉积物。并且,在沉积物黏土粒级(体积)百分含量较高的层段沉积物磁化率数值相对较高。这一变化趋势与南海南部NS93-5孔[19]、东帝汶海MD98-2172岩心[12]和东海内陆架EC2005孔的部分层段[20]沉积物磁化率和粒度的相关关系的研究结果相似。在对台湾海峡西部外海表层沉积物[21]和墨西哥湾陆坡表层沉积物[15]的磁化率的研究中,也发现沉积物粒度越细,其磁化率数值越高。
在同一岩性单元内沉积物的磁性主要受到碳酸盐含量和碎屑矿物含量2个因素的影响。以岩性单元Ⅱ内沉积物为例:首先,在碳酸盐含量高的层段区间,X值相对较低(图5中阴影部分),这是由于碳酸盐是逆磁性矿物,对磁化率等磁性参数的贡献极小,并且碳酸盐含量的大幅增加稀释了沉积物中黏土粒级含量,使得相应层段的沉积物磁性相对较低。其次,在黏土粒级含量相对较低的层段,X值却相对较高(图5中虚线框部分)。具有这一特征的深度区间,通过对沉积物岩性观察、沉积物图片观察和粒度分析结果得出这些深度区间内粉砂含量高,含有相对大量碎屑矿物。可认为该深度区间碎屑矿物含量对沉积物磁性参数有重要的贡献。
该柱状样S300比值在碳酸盐含量较高的重力流沉积层段比值较小,在碎屑矿物含量较高的层段比值较大。这一特征仍然显示了磁性参数与碎屑矿物含量的关系。
2.4.2 磁性参数变化与沉积环境
通过与SO177航次GC10站位沉积学和古海洋学结果[16-17]相对比,可以得到DSH-1C柱状样3个岩性单元从下到上分别为MIS3期到MIS1期的沉积记录。在该沉积期间内,据前人研究[17,22-23],MIS1期(冰后期)为全新世高海面暖时期,MIS2期为末次冰期,MIS3期为末次间冰期。从图5可见,气候最暖时磁性参数值最高,末次冰期磁性参数最低,而末次间冰期较高。
在海洋沉积物中磁性矿物来源除海底火山和热液成岩作用带来的磁性矿物之外,其中主要是通过风、河流、冰川的搬运作用以及海岸的侵蚀作用,将陆源碎屑搬运至海洋沉积物中的磁性矿物;其他也有生物作用、成岩作用形成的自生磁性矿物。目前研究认为,陆坡海洋沉积物中磁性矿物主要来自于陆源,而其磁性参数(如磁化率)与沉积物中陆源物质丰度相关[1-2,4,9,19]。前人在对黄土磁性矿物揭示古气候变化的研究中[24]提出,温暖潮湿的气候促进黄土的化学风化形成磁性较强的古土壤,而寒冷时期的黄土磁性较弱。
由此可推知,物源区碎屑矿物自身的风化过程因气候冷暖改变而产生的磁性差异,输入海洋中也可能导致温暖时期的海洋沉积物磁性较强,反之在寒冷时期较弱。
因此,研究区内,气候温暖间冰期河流的淡水输入量较大,带来较多的陆源物质[23],表现为磁性参数的相对高值。这一特征在碎屑矿物含量较高的层段(如490 cm深度区间)有明显的表现:沉积物中除含有较多碎屑矿物之外还含有少量木屑,具有陆源碎屑的特征相应其磁性也表现为高值。在寒冷的MIS2期间,淡水输入减少,同时海平面的降低,也增加了离开陆地的距离,整体陆源输入的不足导致沉积物中磁性矿物含量小,该岩心中此期的磁性参数值最低。此外,该地史时期内海平面为最低,有数层来自陆架的重力流沉积层[16-17,23,25-28],这些重力流层中含有大量的有孔虫和生物碎屑[26-27]。它们的存在使得这些层中沉积物中碳酸盐含量增加,同时也是导致这些重力流层中磁性最低的原因。
3 结论
通过对南海北部陆坡DSH-1C柱状样沉积物的粒度分析结果、磁学分析结果、碳酸盐含量的分析,通过与相邻站位SO177-GC10站位沉积物岩心的对比,得到以下认识:
1)DSH-1C柱状样为晚更新世到全新世的深海—半深海沉积,主要岩性为黏土质粉砂,中间夹有数层重力流沉积物。
2)DSH-1C柱状样沉积物的磁性特征随深度变化的特征,显示其主要受沉积物中磁性矿物含量影响;沉积物中磁性矿物含量十分稀少,以低矫顽力软磁性矿物为主;沉积物磁性垂直变化与黏土粒级含量变化相似,并且受到碳酸盐稀释作用和碎屑矿物含量的影响。
3)DSH-1C柱状样在气候温暖的MISl冰后期(0~约152 cm),海平面最高,陆源输入量最大,沉积物磁性参数值最高;MIS2末次冰期(约152~470 cm深度区间),海平面最低,陆源输入不足,磁性参数最低;MIS3末次间冰期(约470~626 cm深度区间),气候相对较暖,海平面较高,磁性参数较高。
参考文献
[1]Evans M E,Heller F.Environmental Magnetism:Principles and Applications of Envirom-agnetics[M].London:Academic Press,1986:1-127.
[2]Thompson R,Oldfield F.Environmental Magnetism[M].London:Allen&Unwin,1986:7-174.
[3]姜月华,殷鸿福,王润华.环境磁学理论、方法和研究进展[J]地球学报,2004,25(3):357-362.
[4]周元涛,张玉芬.环境磁学及其在古气候环境研究中的应用[J].工程地球物理学报,2007,4(6):533-540.
[5]Rao V P,Kessarkar P M,Patil S K,et al.Rock Magnetic and Geochemical Record in a Sediment Core from the Eastern Arabian Sea:Diagenetic and Environmental Implications During the Late Quaternary[J].Palaeogeography,Palaeoclimato1ogy,Palaeoecology,2008,270:46-52.
[6]Kanamatsu T,Ohno M,Acton G,et al.Rock Magnetic Properties of the Gardar Drift Sedimentary Sequence,Site IODP U1314,North Atlantic:Implications for Bottom Current Change Through the Mid-Pleistocene[J].Marine Geology,2009,265:31-19.
[7]贾海林,刘苍宇,张卫国,等.崇明岛CY孔沉积物的磁性特征及其环境意义[J].沉积学报,2004,22(1):117-123.
[8]李萍,李培英张晓龙,等.冲绳海槽沉积物不同粒级的磁性特征及其与环境的关系[J].科学通报,2005,50(3):262-268.
[9]孟庆勇,李安春,靳宁,等.东菲律宾海柱状沉积物的磁性特征[J].海洋地质与第四纪地质,2006,26(3):57-63.
[10]孟庆勇,李安春,李铁钢,等.东菲律宾海沉积物200ka以来地磁场相对强度记录及其年代学意义[J].中国科学D辑:地球科学,2009,39(1):24-34.
[11]顾家伟,王张华,李艳红,等.东海外陆架前孔沉积物的岩性和磁性特征及成因讨论[J]古地理学报,2006,8(5):269-276.
[12]李海燕,张世红,方念乔.东帝汶海MD98-2172岩心磁记录与还原成岩作用过程[J].第四纪研究,2007,27(6):1023-1030.
[13]Novosell,Spence G D,Hyndman R D.Reced Magnetization Proce by Increased Methane Flux at a Gas Hydrate Vent[J].Marine Geology,2005,216:165-274.
[14]Larrasoana J C,Roberts A P,Musgrave R J.Diagenetic Formation of Greigite and Pyrrhotite in Gas Hydrate Marine Sedimentary Systems[J].Earth and Planetary Science,2007,261:350-366.
[15]Ellwood B B,Balsam W L,Roberts H H.Gulf of Mexico Sediment Sources and Sediment Trends from Magnetic Susceptibility Measurements of Surface Samples[J].Marine Geology,2006,230:237-248.
[16]黄永样,Suess E,吴能友,等.南海北部甲烷和天然气水合物地质——中德合作SO-177航次成果专报[M].北京:地质出版社,2008:20-191.
[17]Zhang Haiqi,Su Xin,Chen Fang,et al.Last Glacial LowSea-Level Turbidites Recorded in the Abyssal Cold-Seep Sediments from the Northern South China Sea,Chinese Journal of Oceanology and Limnology(in press).
[18]Dekkers M J.Environmental Magnetism:An Introction[J].Geologie in Mijinbouw,1997,76:163-182.
[19]杨小强,李华梅,周永章.南海南部NS93-5孔沉积物磁化率特征及其对全球气候变化的记录[J].海洋地质与第四纪地质,2002,22(1):31-37.
[20]孟庆勇,李安春,徐方建,等.东海内陆架EC2005孔沉积物磁化率与粒度组分的相关研究[J].科技导报,2009,27(10):32-37.
[21]杨黎静,汪卫国.台湾海峡西部表层沉积物磁化率特征[J]沉积学报,2009,27(4):26-33.
[22]同济大学海洋地质系编著.古海洋学概论[M],上海:同济大学出版社,1989:241-248.
[23]周斌,郑洪波,杨文光,等.末次冰期以来南海北部物源及古环境变化的有机地球化学记录[J].第四纪研究,2008,28 (5):407-413.
[24]邓成龙,刘青松,潘永信,等.中国黄土环境磁学[J].第四纪研究,2007,27(2):193-210.
[25]石学勇.南海北部深水区SO177航次沉积物粒度及微结构分析研究[D].北京:中国地质大学,2006.
[26]张富元,张霄宇,杨群慧,等.南海东部海域的沉积作用和物质来源研究[J].海洋学报,2005,27(3):79-90.
[27]陈芳,苏新,D Nurnberg,等.南海东沙海域末次冰期最盛期以来的沉积特征[J].海洋地质与第四纪地质,2006,26(6):9-17.
[28]Chen M T,Huang C Y,Wei K Y.25,000-year Late Quaternary Records of Carbonate Preservation in the South China Sea[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1997,129:155-169.
⑺ 枣庄市金圣高科硅业有限公司怎么样
简介:枣庄市金圣高科硅业有限公司是专业生产熔融硅微粉和结晶硅微粉的高新技术企业。公司坐落在山东省枣庄市市中区境内,西临(30公里)京沪高铁和京福高速公路;东临(30公里)京沪高速,南临(40公里)京杭大运河台儿庄港。枣庄市金圣高科硅业有限公司先后开发生产了高纯超细结晶硅微粉、集成电路封装用熔融硅微粉两大类30余品种系列石英硅微粉产品,被广泛应用到集成电路、环氧塑封、橡胶、涂料、陶瓷、坩埚、覆铜板等生产中,涵盖电子信息、高级建材、化工等诸多领域,公司产品检测仪器齐全,拥有马尔文激光粒度分析仪。枣庄市金圣高科硅业有限公司已通过ISO9001-2008质量管理体系认证,对产品生产全过程实施高品质管理。
法定代表人:王涛
成立时间:2012-11-13
注册资本:100万人民币
工商注册号:370400200030248
企业类型:有限责任公司(自然人投资或控股)
公司地址:枣庄市市中区税郭镇西三屯村
⑻ 马尔文公司生产的激光粒度分析仪mastersizer2000,多少万元/台,急求答案
每台大约60万元人民币,我公司使用有3台mastersizer2000