当前位置:首页 » 价格知识 » 马尔科夫过程与股票价格
扩展阅读
中保国际股票代码 2025-06-17 09:53:56
只有中国有的股票 2025-06-17 09:32:54

马尔科夫过程与股票价格

发布时间: 2021-05-08 06:55:25

『壹』 鞅过程与马尔科夫过程是什么关系

看到这个问题太亲切了,去年这个时候在准备面试,这个问题也让我困惑了好一阵子.数学定义之前的答案都回答过了,我从直观上说说我的想法吧.
Martingale的词本意是指马车上马夫控制马前进的缰绳(如果我记得没错的话),所以从词源来看刻画了一种过程前进(未来)与现在出发点关系的含义。具体来说缰绳的作用是使得马车的前进方向与现在所冲的方向一致,所以在概率上来解释就是未来发生的所有路径可能性的期望值与现在的出发点一致。
从这个意义上来说Matingale的核心是说明了一个过程在向前演化的过程中的稳定性性质。但它并没有说明这个过程是如何到达这一时间点的(是否由上一个时间点所在的位置决定,matingale并没有说明)。再用马车的例子来说,Martingale告诉了你马车在未来是怎么向前走的,中间会有左右的波动(比如马、车夫走神了,路上有坑马要绕开,etc.),但整体来说马是沿着一条直线向前走的。
而马尔科夫过程的核心在于点明了过程的演化是无记忆性的。还拿马车来举栗子,假设车夫喝醉了,他没有意识并在一个很大的广场,马车下一刻前进的方向并不需要是一条直线(经过车夫与马的直线,这种情况下缰绳是绷直的,是martingale),或者说缰绳由于车夫没绷紧是松垮的,这种情况下马车在下一刻可以去任何一个方向,整体上来说前进方向也不必须有什么稳定性规律可循,但整个过程唯一的共性是马迈出前腿的时候,能够到达的所有可能范围,是由它的后腿(你现在所在的位置)决定的(但马可能扭一扭屁股,身子弯曲一下,所以不必须走直线,不必需走直线,不必需走直线!),而并没有由上一步马所在的位置决定,这也就是所谓的无记忆性。
所以从这两个角度来理解,两个名词
有共性:都从一个过程的全生命角度描画了一个过程的演进性质,
有重叠:当还是马车例子的时候,martingale也是一个markov(因为虽然走直线,但下一刻的位置还是只由现在决定,只是马身子不能扭曲,不能改变方向),这个例子在概率上最熟悉的模型就是brownian motion了;而反过来,马车未来位置由现在决定,又走直线,所以此时markov process 也是一个martingale (例子还是brownian motion);
但更重要的是两个过程本质上不是在讲一回事:比如还是马车车夫,喝醉了但走在一个三维空间,这时候它是一个markov process,但是由于方向不确定,此时已经不是martingale而变成了一个local martingale; 而反过来,假设有一个错帧宇宙,空间共享但时间差一天,这时候同一个马车走在不同的宇宙里(但行走轨迹独立),缰绳拉直,此时两架马车都走之前,两架马车组成的系统是一个martingale,但是由于下一时刻前进的方向与宇宙1中的此时有关,也与宇宙2中的昨天有关,所以两架马车组成的系统就不再是一个markov了。
总结一下,brownian motion (wiener process)既是markov process 又是 martingale; 而markov process 与martingale是相交而非包含与反包含关系。只能说你中有我我中有你,但你不属于我我也不属于你...

编辑于 2016-

『贰』 通俗的解释马尔科夫过程

马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。

『叁』 如何理解"马尔科夫过程"是eta的基本理论基础

马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。

『肆』 马尔科夫 初始概率和绝对概率怎么计算

此处根据的是随机过程马尔可夫链中的极限分布定理。
设此处的平衡概率向量为x=(x1,x2,x3),并且记已知的转移概率矩阵为:
p=00.80.2
00.60.4
1.000
则根据马尔可夫链的极限分布定理,应有xp=x,即:
(x1,x2,x3)*(00.80.2
00.60.4
1.000)
=(x1,x2,x3)
利用矩阵乘法,上式等价于3个等式:
x3=x1
0.8x1+0.6x2=x2
0.2x1+0.4x2=x3
由以上三个等式只能解得:x3=x1,以及x2=2x1
另外,再加上平衡概率向量x的归一性,即:x1+x2+x3=1
最终可解得:x1=0.25,x2=0.5,x3=0.25
不懂再问,祝好!

『伍』 什么是马尔科夫过程

马尔可夫过程(Markov process)是一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态 (现在)的条件下,它未来的演变 (将来)不依赖于它以往的演变 ( 过去 ) 。 例如森林中动物头数的变化构成——马尔可夫过程 。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。

『陆』 马尔科夫链与马尔科夫过程关系

如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程
nX(t+1) = f( X(t) )

时间和状态都离散的马尔科夫过程称为马尔科夫链
记作{Xn = X(n), n = 0,1,2,…}
–在时间集T1 = {0,1,2,…}上对离散状态的过程相继观察的结果
链的状态空间记做I = {a1, a2,…}, ai∈R.
条件概率Pij ( m ,m+n)=P{Xm+n = aj|Xm = ai} 为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。

由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有
当Pij(m,m+n)与m无关时,称马尔科夫链为齐次马尔科夫链,通常说的马尔科夫链都是指齐次马尔科夫链。
马链的要义就是:如果你想展望未来那么你应立足今日,忘记昨天。

验证是不是马氏链,应该验证是否具有马氏性。所谓马氏性,就是明日只与今日
有关,与前日并无直接的关系。只要验证明日至于今日有关就行了。
立足今日,不能忘记昨天,而是完全记住昨天。未来的成就依赖与以往的历史造就的现在的你。

马尔可夫链应用

什么是Markov链?

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。

马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则

P(X_{n+1}=x|X_0, X_1, X_2, \ldots, X_n) = P(X_{n+1}=x|X_n). \,
这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。

马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。

『柒』 如何理解"马尔科夫过程"是eta的基本理论基础答案

一、马尔科夫转移矩阵法的涵义
单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有
率。
市场占有率的预测可采用马尔科夫转移矩阵法,也就是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。马尔科夫是俄国数学家,他在20世纪初发现:一个系统的某些因素在转移中,第n次结果只受第n-1的结果影响,只与当前所处状态有关,与其他无关。比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。 ,
在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。
马尔科夫分析法的一般步骤为:
①调查目前的市场占有率情况;
②调查消费者购买产品时的变动情况;
③建立数学模型;
④预测未来市场的占有率。
二、马尔科夫分析模型
实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。
马尔科夫分析法的基本模型为:
X(k+1)=X(k)×P
公式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移概率矩阵,
X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。
必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一般适用于短期的趋势分析与预测。
三、马尔科夫过程的稳定状态
在较长时间后,马尔科夫过程逐渐处于稳定状态,且与初始状态无关。马尔科夫链达到稳定状态的概率就是稳定状态概率,也称稳定
概率。市场趋势分析中,要设法求解得到市场趋势分析对象的稳态概率,并以此做市场趋势分析。
在马尔科夫分析法的基本模型中,当X:XP时,称X是P的稳定概率,即系统达到稳定状态时的概率向量,也称X是P的固有向量或特征向量,而且它具有唯一性。
四,马尔科夫转移矩阵法的应用
马尔科夫分析法,是研究随机事件变化趋势的一种方法。市场商品供应的变化也经常受到各种不确定因素的影响而带有随机性,若其具有"无后效性",则用马尔科夫分析法对其未来发展趋势进行市场趋势分析五,提高市场占有率的策略预测市场占有率是供决策参考的,企业要根据预测结果采取各种措施争取顾客。提高市场占有率一般可采取三种策略:
(1)设法保持原有顾客;
(2)尽量争取其他顾客;
(3)既要保持原有顾客又要争取新的顾客。
第三种策略是前两种策略的综合运用,其效果比单独使用一种策略要好,但其所需费用较高。如果接近于平稳状态时,一般不必花费竞争费用。所以既要注意市场平稳状态的分析,又要注意市场占有率的长期趋势的分析。
争取顾客、提高市场占有率的策略和措施一般有:
①扩大宣传。主要采取广告方式,通过大众媒体向公众宣传商品特征和顾客所能得到的利益,激起消费者的注意和兴趣。
②扩大销售。除联系现有顾客外,积极地寻找潜在顾客,开拓市场。如向顾客提供必要的服务等。
③改进包装。便于顾客携带,增加商品种类、规格、花色,便于顾客挑选,激发顾客购买兴趣。
④开展促销活动。如展销、分期付款等。
⑤调整经营策略。根据市场变化,针对现有情况调整销售策略,如批量优待、调整价格、市场渗透、提高产品性能、扩大产品用途、降低产品成本等,以保持市场占有率和扩大市场占有率。
马尔科夫分析模型
实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。
马尔科夫分析法的基本模型为:
X(k+1)=X(k)×P
公式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移矩阵概率,
X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。
必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一般适用于短期的趋势分析与预测。
请参考,希望对你有所帮助!

『捌』 如何通过隐马尔科夫模型来预测股票价格

马尔科夫预测模型它的前提条件是,在各个期间或者状态时,变量面临的下一个期间或者状态的转移概率都是一样的、不随时间变化的。一旦转移概率有所变化,Markov模型必须改变转移概率矩阵的参数,否则,预测的结果将会有很大的偏差。 随机过程中,