当前位置:首页 » 价格知识 » 假设股票价格模型参数
扩展阅读
股票全治科技 2025-06-18 09:20:13

假设股票价格模型参数

发布时间: 2021-05-29 19:34:47

❶ 这五个题 求答案 要有步骤! 谢谢1.假设股票当前价格40美元 假设六个

重述:
定价160时,收入为150*55%*160=13200
定价140时,收入为150*65%*140=13650
定价120时,收入为150*75%*120=13500
定价100时,收入为150*85%*100=12750
假设:曲线为中间高两侧低,可试一元二次回归,设二次回归模型。
建立:
设y=收入,x为房价,y=ax^2+bx+c
求解:
将以上四组数据带入,解得a=-1,b=277.5,c=-5000
进而:求收入最高时的定价
求y=-x^2+277.5x-5000的最大值,可知
x=138.75时,每天收入最高

❷ 稳定增长股票价格模型

股票增长模型主要包括:
一、零增长模型
零增长模型是股息贴现模型的一种特殊形式,它假定股息是固定不变的。换言之,股息的增长率等于零。零增长模型不仅可以用于普通股的价值分析,而且适用于统一公债和优先股的价值分析。
零增长模型实际上也是不变增长模型的一个特例。特别是,假定增长率合等于零,股利将永远按固定数量支付,这时,不变增长模型就是零增长模型。这两种模型来看,虽然不变增长的假设比零增长的假设有较小的应用限制,但在许多情况下仍然被认为是不现实的。但是,不变增长模型却是多元增长模型的基础,因此这种模型极为重要。
二、不变增长模型
不变增长模型亦称戈登股利增长模型又称为“股利贴息不变增长模型”、“戈登模型(Gordon Model)”,在大多数理财学和投资学方面的教材中,戈登模型是一个被广泛接受和运用的股票估价模型,该模型通过计算公司预期未来支付给股东的股利现值,来确定股票的内在价值,它相当于未来股利的永续流入。戈登股利增长模型是股息贴现模型的第二种特殊形式,分两种情况:一是不变的增长率;另一个是不变的增长值。
三、多元增长模型
多元增长模型是假定在某一时点T之后股息增长率为一常数g,但是在这之前股息增长率是可变的。
多元增长模型是被最普遍用来确定普通股票内在价值的贴现现金流模型。这一模型假设股利的变动在一段时间T内并没有特定的模式可以预测,在此段时间以后,股利按不变增长模型进行变动。因此,股利流可以分为两个部分:第一部分包括在股利无规则变化时期的所有预期股利的现值;第二部分包括从时点T来看的股利不变增长率时期的所有预期股利的现值。

❸ 股票估价的股票估价的模型

股票估价的基本模型
计算公式为:
股票价值
估价
R——投资者要求的必要收益率
Dt——第t期的预计股利
n——预计股票的持有期数
零增长股票的估价模型
零成长股是指发行公司每年支付的每股股利额相等,也就是假设每年每股股利增长率为零。每股股利额表现为永续年金形式。零成长股估价模型为:
股票价值=D/Rs
例:某公司股票预计每年每股股利为1.8元,市场利率为10%,则该公司股票内在价值为:
股票价值=1.8/10%=18元
若购入价格为16元,因此在不考虑风险的前提下,投资该股票是可行的
二、不变增长模型
(1)一般形式。如果我们假设股利永远按不变的增长率增长,那 么就会建立不变增长模型。 [例]假如去年某公司支付每股股利为 1.80 元,预计在未来日子 里该公司股票的股利按每年 5%的速率增长。因此,预期下一年股利 为 1.80×(1 十 0.05)=1.89 元。假定必要收益率是 11%,该公司的 股票等于 1. 80×[(1 十 0. 05)/(0.11—0. 05)]=1. 89/(0. 11—0. 05) =31.50 元。而当今每股股票价格是 40 元,因此,股票被高估 8.50 元,建议当前持有该股票的投资者出售该股票。
(2)与零增长模型的关系。零增长模型实际上是不变增长模型的 一个特例。特别是,假定增长率合等于零,股利将永远按固定数量支 付,这时,不变增长模型就是零增长模型。 从这两种模型来看, 虽然不变增长的假设比零增长的假设有较小 的应用限制,但在许多情况下仍然被认为是不现实的。但是,不变增 长模型却是多元增长模型的基础,因此这种模型极为重要。
三、多元增长模型 多元增长模型是最普遍被用来确定普通股票内在价值的贴现现 金流模型。这一模型假设股利的变动在一段时间内并没有特定的 模式可以预测,在此段时间以后,股利按不变增长模型进行变动。因 此,股利流可以分为两个部分。 第一部分 包括在股利无规则变化时期的所有预期股利的现值 第二部分 包括从时点 T 来看的股利不变增长率变动时期的所有预期股利的现 值。因此,该种股票在时间点的价值(VT)可通过不变增长模型的方程 求出
[例]假定 A 公司上年支付的每股股利为 0.75 元,下一年预期支 付的每股票利为 2 元,因而再下一年预期支付的每股股利为 3 元,即 从 T=2 时, 预期在未来无限时期, 股利按每年 10%的速度增长, 即 0:,Dz(1 十 0.10)=3×1.1=3.3 元。假定该公司的必要收益 率为 15%,可按下面式子分别计算 V7—和认 t。该价格与目前每股 股票价格 55 元相比较,似乎股票的定价相当公平,即该股票没有被 错误定价。
(2)内部收益率。零增长模型和不变增长模型都有一个简单的关 于内部收益率的公式,而对于多元增长模型而言,不可能得到如此简 捷的表达式。虽然我们不能得到一个简捷的内部收益率的表达式,但 是仍可以运用试错方法,计算出多元增长模型的内部收益率。即在建 立方程之后,代入一个假定的伊后,如果方程右边的值大于 P,说明 假定的 P 太大;相反,如果代入一个选定的尽值,方程右边的值小于 认说明选定的 P 太小。继续试选尽,最终能程式等式成立的尽。 按照这种试错方法,我们可以得出 A 公司股票的内部收益率是 14.9%。把给定的必要收益 15%和该近似的内部收益率 14.9%相 比较,可知,该公司股票的定价相当公平。
(3)两元模型和三元模型。有时投资者会使用二元模型和三元模 型。二元模型假定在时间了以前存在一个公的不变增长速度,在时间 7、以后,假定有另一个不变增长速度城。三元模型假定在工时间前, 不变增长速度为身 I,在 71 和 72 时间之间,不变增长速度为期,在 72 时间以后,不变增长速度为期。设 VTl 表示 在最后一个增长速度开始后的所有股利的现值,认-表示这以前 所有股利的现值,可知这些模型实际上是多元增长模型的特例。
四、市盈率估价方法 市盈率,又称价格收益比率,它是每股价格与每股收益之间的比 率,其计算公式为反之,每股价格=市盈率×每股收益 如果我们能分别估计出股票的市盈率和每股收益, 那么我们就能 间接地由此公式估计出股票价格。这种评价股票价格的方法,就是 “市盈率估价方法”
五、贴现现金流模型 贴现现金流模型是运用收入的资本化定价方法来决定普通股票 的内在价值的。按照收入的资本化定价方法,任何资产的内在价值是 由拥有这种资产的投资 者在未来时期中所接受的现金流决定的。 由于现金流是未来时期的预 期值,因此必须按照一定的贴现率返还成现值,也就是说,一种资产 的内在价值等于预期现金流的贴现值。对于股票来说,这种预期的现 金流即在未来时期预期支付的股利,因此,贴现现金流模型的公式为 式中:Dt 为在时间 T 内与某一特定普通股相联系的预期的现金 流,即在未来时期以现金形式表示的每股股票的股利;K 为在一定风 险程度下现金流的合适的贴现率; V 为股票的内在价值。 在这个方程里,假定在所有时期内,贴现率都是一样的。由该方 程我们可以引出净现值这个概念。净现值等于内在价值与成本之差, 即 式中:P 为在 t=0 时购买股票的成本。 如果 NPV>0,意味着所有预期的现金流入的净现值之和大于投 资成本,即这种股票被低估价格,因此购买这种股票可行; 如果 NPV<0,意味着所有预期的现金流入的净现值之和小于投 资成本,即这种股票被高估价格,因此不可购买这种股票。 在了解了净现值之后,我们便可引出内部收益率这个概念。内部 收益率就是使投资净现值等于零的贴现率。如果用 K*代表内部收益 率,通过方程可得 由方程可以解出内部收益率 K*。把 K*与具有同等风险水平的股 票的必要收益率(用 K 表示)相比较:如果 K*>K,则可以购买这种股 票;如果 K*<K,则不要购买这种股票。 一股普通股票的内在价值时存在着一个麻烦问题, 即投资者必须 预测所有未来时期支付的股利。 由于普通股票没有一个固守的生命周 期,因此建议使用无限时期的股利流,这就需要加上一些假定。 这些假定始终围绕着胜利增长率,一般来说,在时点 T,每股股 利被看成是在时刻 T—1 时的每股股利乘上胜利增长率 GT,其计 例如,如果预期在 T=3 时每股股利是 4 美元,在 T=4 时每股股利 是 4.2 美元,那么不同类型的贴现现金流模型反映了不同的股利增 长率的假定

❹ 计算var时假设股票价格符合什么运动

VaR 是给定置信水平下,某一金融资产或证券投资组合在未来特定的时间内的最大损失额。也就是说,如果你确定你的投资组合服从某种分布,比如说最简单的正态分布,那么vaule at risk就是在正态分布5%(或95%,因为正态是对称的)的置信水平之下的...

❺ 如何判断一只股票的价格高于或者低于他的实际价值

计算出股票的内在价值,然后与价格比较就可以了。
股票内在价值的计算方法
(一)贴现现金流模型
贴现现金流模型(基本模型贴现现金流模型是运用收入的资本化定价方法来决定普通股票的内在价值的。按照收入的资本化定价方法,任何资产的内在价值是由拥有这种资产的投资者在未来时期中所接受的现金流决定的。一种资产的内在价值等于预期现金流的贴现值。
现金流模型的一般公式如下:
(Dt:在未来时期以现金形式表示的每股股票的股利 k:在一定风险程度下现金流的合适的贴现率 V:股票的内在价值)净现值等于内在价值与成本之差,即NPV=V-P其中:P在t=0时购买股票的成本 如果NPV>0,意味着所有预期的现金流入的现值之和大于投资成本,即这种股票价格被低估,因此购买这种股票可行。如果NPV<0,意味着所有预期的现金流入的现值之和小于投资成本,即这种股票价格被高估,因此不可购买这种股票。通常可用资本资产定价模型(CAPM)证券市场线来计算各证券的预期收益率。并将此预期收益率作为计算内在价值的贴现率。
内部收益率
内部收益率就是使投资净现值等于零的贴现率。(Dt:在未来时期以现金形式表示的每股股票的股利 k*:内部收益率 P:股票买入价)。由此方程可以解出内部收益率k*。
(二)零增长模型
1、假定股利增长率等于0,即Dt=D0(1+g)tt=1,2,┅┅,则由现金流模型的一般公式得: P=D0/k<BR><BR>
2、内部收益率k*=D0/P