当前位置:首页 » 价格知识 » 股票价格数据平稳性检验的方法
扩展阅读
佛塑科技股票价 2025-06-19 13:57:37
股票交易员最高年龄 2025-06-19 13:38:52
bunge公司股票代码 2025-06-19 13:00:09

股票价格数据平稳性检验的方法

发布时间: 2021-07-06 04:38:01

1. 判定数据序列平稳与否的方法都有哪些

1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。
2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。
3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。
4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。
(1) 自回归模型AR(p):如果时间序列 满足
其中 是独立同分布的随机变量序列,且满足:

则称时间序列 服从p阶自回归模型。或者记为 。
平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。
(2) 移动平均模型MA(q):如果时间序列 满足
则称时间序列 服从q阶移动平均模型。或者记为 。
平稳条件:任何条件下都平稳。
(3) ARMA(p,q)模型:如果时间序列 满足

则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。
特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。

2、模型参数的估计
①初估计
i、 AR(p)模型参数的Yule-Walker估计
特例:对于一阶自回归模型AR(1), ,对于二阶自回归模型AR(2), , 。
ii、MA(q)模型参数估计
特例:对于一阶移动平均模型MA(1), ,对于二阶移动平均模型MA(2), , 。
iii、ARMA(p,q)模型的参数估计
模型很复杂,一般利用统计分析软件包完成。
②精估计
ARMA(p,q)模型参数的精估计,一般采用极大似然估计,由于模型结构的复杂性,无法直接给出参数的极大似然估计,只能通过迭代方法来完成,这时,迭代初值常常利用初估计得到的值。
3、ARMA(p,q)序列预报
设平稳时间序列 是一个ARMA(p,q)过程,则其最小二乘预测: 。
i、AR(p)模型预测

ii、ARMA(p,q)模型预测
,其中 。
iii、预测误差
预测误差为: 。l步线性最小方差预测的方差和预测步长l有关,而与预测的时间原点t无关。预测步长l越大,预测误差的方差也越大,因而预测的准确度就会降低。所以一般不能用ARMA(p,q)作为长期预测模型。
iv、预测的置信区间
预测的95%置信区间:
不知道对你有没帮助

2. 度量股票市场的波动性有哪些常见方法

1.首先你要知道股票的数据是时间序列数据。
经研究表明,股票数据是有自相关性的,所以古典的回归模型拟合常常是无效的。

2.另外股票数据序列是具有平稳性,或一阶差分、高阶差分平稳性
所以一般来说都会采用平稳性时间序列模型。
简单的如AR(p), MA(q), ARMA(p,q)模型等。

3.但由于这些数据往往还有条件异方差性。进一步的模型修正
有ARCH(p) , GARCH(p,q)等模型。

3中的模型是现今一些研究股票波动的主流手段的基础。

4.如果要研究多支股票波动的联合分布,可以用Copula理论进行建模(这个一般用于VaR,ES风险度量,比较前沿,国内90年代才开始引进,但并不算太难)

5.另外还有一些非实证的手段,那是搞数学的弄的了

3. 面板数据怎么进行平稳性检验

数据量少的话一般无须做平稳性检验。 但同时还得考虑用这些数据做什么,如果 是时间序列预测,则必须做该检验

4. 怎么使用EViews进行平稳性检验

具体步骤如下:

1、创建Workfile:点击File/New/Workfile,输入起止日期

5. 股票价格评估的方法有哪些各有什么优缺点

价格怎么个评估?你说的是估值吧,那是各个证券行业给出的所谓的价值,人云亦云。没的准确数值的,炒股千万别信PE,会死的很惨的。典型代表,中国石油

6. 如何用stata进行平稳性检验

help dfuller

7. 检验时间序列平稳性的方法有哪两种

1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。 2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。 3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。 4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回归模型AR(p):如果时间序列 满足 其中 是独立同分布的随机变量序列,且满足: , 则称时间序列 服从p阶自回归模型。或者记为 。 平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。 (2) 移动平均模型MA(q):如果时间序列 满足 则称时间序列 服从q阶移动平均模型。或者记为 。 平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列 满足 则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。 特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。 二、时间序列的自相关分析 1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。 2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。 3、 样本自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。 4、 样本的偏自相关函数: 其中, 。 5、 时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: ①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; ②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。 6、 判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。 7、 ARMA模型的自相关分析 AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。 三、单位根检验和协整检验 1、单位根检验 ①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模型的残差不是白噪声,而且存在自相关的情况。 ②随机游动 如果在一个随机过程中, 的每一次变化均来自于一个均值为零的独立同分布,即随机过程 满足: , ,其中 独立同分布,并且: , 称这个随机过程是随机游动。它是一个非平稳过程。 ③单位根过程 设随机过程 满足: , ,其中 , 为一个平稳过程并且 ,,。 2、协整关系 如果两个或多个非平稳的时间序列,其某个现性组合后的序列呈平稳性,这样的时间序列间就被称为有协整关系存在。这是一个很重要的概念,我们利用Engle-Granger两步协整检验法和J 很高兴回答楼主的问题 如有错误请见谅

8. 时间序列数据一定要进行平稳性检验么急急急!!!!!

接受原假设,从算出来的检验统计量 -8.888888 都大于各临界值,可以认为你的序列在这些显著性水平下都是非平稳的。不能通过ADF检验。 这些你可以参考一下易丹辉的书,易丹辉数据分析与Eviews应用。

9. 在stata中怎样检验数据的平稳性

用stata进行平稳性检验的方法:
1、点击面板上的额ADF检验
2、在打开的对话框中输入命令dfuller,就开始了平稳性检验

Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。

Stata 的统计功能很强,除了传统的统计分析方法外,还收集了近 20 年发展起来的新方法,如 Cox 比例风险回归,指数与 Weibull 回归,多类结果与有序结果的 logistic 回归, Poisson 回归,负二项回归及广义负二项回归,随机效应模型等。