当前位置:首页 » 价格知识 » 股票价格的arima模型
扩展阅读
转行做股票交易员 2025-09-15 04:00:56
股票中交易明细怎么看 2025-09-15 03:41:48
阿斯麦股票代码 2025-09-15 02:38:07

股票价格的arima模型

发布时间: 2021-10-10 13:57:48

『壹』 ARIMA时间序列建模过程——原理及python实现

原文链接:http://tecdat.cn/?p=20742

时间序列被定义为一系列按时间顺序索引的数据点。时间顺序可以是每天,每月或每年。

以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

『贰』 arima模型python 怎么看平稳性

时间序列分析(一) 如何判断序列是否平稳
序列平稳不平稳,一般采用两种方法:
第一种:看图法
图是指时序图,例如(eviews画滴):

分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。
看看上面这个图,很明显的增长趋势,不平稳。

第二种:自相关系数和偏相关系数
还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。

分析:判断平稳与否的话,用自相关图和偏相关图就可以了。
平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0 。
自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。

下面是通过自相关的其他功能
如果自相关是拖尾,偏相关截尾,则用 AR 算法
如果自相关截尾,偏相关拖尾,则用 MA 算法
如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。
不平稳,怎么办?
答案是差分
还是上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分,上图。

从图上看,一阶差分的效果不错,看着是平稳的。

『叁』 如何引入ARIMA模型进行预测,求通俗语言然后有步骤性的回答。本人数学底子一般。但是逻辑性还行

(一) ARIMA 模型简介
ARIMA 方法是时间序列预测中一种常用而有效的方法, 它是用变量Yt 自身
的滞后项以及随机误差项来解释该变量, 而不像一般回归模型那样用k 个外生变
量X1 , X2 , ⋯, Xk 去解释Yt 。ARIMA 方法能够在对数据模式未知的情况下找到
适合数据所考察的模型, 因而在金融和经济领域预测方面得到了广泛应用。它的
具体形式可表达成ARIMA (p , d , q) , 其中p 表示自回归过程阶数; d 表示差分
的阶数; q 表示移动平均过程的阶数。如果时间序列数据是非平稳的, 则需要对
其进行d 阶差分, 使其平稳化, 然后对平稳化后的序列用ARIMA 建模。

『肆』 eviews中运用某个股票的价格拟合ARIMA模型,如何处理其中的缺失值

eviews拟合ARIMA模型问题均可+名中我QQ来给以解决。

『伍』 (四)ARIMA模型方法

1.ARIMA模型的基本思想

将预测对象随时间推移而形成的数据序列视为一个随机序列,对其进行差分整合后用自回归加移动平均来拟合,并据其对时间序列的过去值及未来值进行预测的数学方法,即ARIMA模型的基本思想。

ARIMA模型一般表示为ARIMA(p,d,q),其数学表达式为

φp(B)(1-B)dytq(B)εt, (7-9)

式中:φp(B)=1-φ1B-…-φpBp,θq(B)=1-θ1B-…-θqBq

AR是自回归,p为自回归项,MA为移动平均,q为移动平均项数,d为差分次数;yt是时间序列,B是后移算子,φ1,…,φp为自回归系数,θ1,…,θq为移动回归系数,{εt} 是白噪声序列。

2.ARIMA模型预测基本程序

(1)平稳性识别

以自相关函数和偏自相关函数图等来判定数列是否为平稳型。

(2)对非平稳序列进行平稳化处理

存在增长或下降趋势,需进行差分处理,直到处理后的数据的自相关函数值和偏相关函数值显著地等于零。

(3)根据时间序列模型的识别规则建立相应模型

据序列的自相关和偏相关函数图判定模型的类型及p与q的阶数。

在自相关和偏相关函数图上,函数在某一步之后为零,称为截尾;不能在某一步之后为零,而是按指数衰减或正负相间递减的形式,称为拖尾。

由自相关函数和偏相关函数是截尾还是拖尾及其期次可进行模型判别,标准见表7-8。

表7-8 模型参数的ACF-PACF图判别的标准

(4)假设检验,诊断残差序列是否为白噪声

用χ2检验检测所估计模型的白噪声残差,其残差应是一随机序列,否则进行残差分析,必要时需重新确定模型。

(5)预测分析

利用已通过检验的模型进行预测分析,得到x(t)在t+1期,即1期以后的预测值,记这个预测值为x(t+1),称它为未来第1期的预测值。

『陆』 arima模型预测需要多少数据

很重要的

『柒』 如何用Arma模型做股票估计

时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。

『捌』 ARIMA能预测股票吗

不能,股票的价格是众多大小投资者共同作用的结果。