当前位置:首页 » 价格知识 » 股票可以用勾股定理买股票吗
扩展阅读
恒大国内上市股票代码 2025-09-10 23:14:02

股票可以用勾股定理买股票吗

发布时间: 2021-10-17 02:35:20

㈠ 勾股定理一般是用来计算什么的,比如勾3股5,玄是多少怎么计算的,一般是用来计算什么的

就是为了三角测量

㈡ 勾股定理里的勾和股各是什么意思

直角边短边为勾,长边为股
下为勾和股的由来:
《周髀算经》中勾股定理的公式与证明
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。 首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二) 而勾股定理的证明呢,就在《周髀算经》上卷一[2] —— 昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。” 周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。 《周髀算经》证明步骤
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。 “故折矩①,以为句广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。 “②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。 “两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。

㈢ 勾股定理为什么说勾3股4斜5

3^2+4^2=5^2 (这里^2平方的意思)
勾股定理可以用三角形表示.上式中,5是斜角边,3和4 分别是两个直角边.
上述的关系是一个事实.

㈣ 在勾股定律中,勾是3,股是4,那么弦一定是5吗



如果勾是3,股是4,那么弦等于5。

如果勾是6,股是8,那么弦等于10。
如果勾是5,股是12,那么弦等于13
……等等。

32+42=52
62+82=102
52+122=132

勾2+股2=弦2
是不是所有的直角三角形都具有这个性质呢?世界上许多数学家,先后用不
同的方法证明了这个结论,我国把它称为勾股定理。

㈤ 勾股定理

不知道啊。。

㈥ 勾股定理里的勾和股各是什么意思

勾股定理里的勾指的是直角三角形中较短的直角边,股指的是直角三角形中较长的直角边,还有斜边叫弦

㈦ 只能说吧三角形勾股定理勾3股4玄5规律是什么

他都可以用一条公式来判别,就是3的平方加4的平方等于5的平方。

㈧ 勾股定理哪里是勾,哪里是股甚麼是勾股定理,有甚麼可以表示

我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。故此定理称为勾股定理。

在任何一个直角三角形(Rt△)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等),这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a的平方+b的平方=c的平方勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。他发现勾股定理的时间比中国晚(中国是最早发现这一几何宝藏的国家)。初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。


㈨ 勾股定理勾3股4弦5为什么不能是2.3.4

勾股定理是a^2+b^2=c^2
这里的a=3,b=4,c=5
5是25开平方算出来的!如果你没学过开平方以后就知道了,不用着急!

㈩ 勾股定理中什么是勾什么是股是谁提出的

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。(这不能考图也就把证明省略了)