⑴ 段友们,有没有比较好看的直播软件.求推荐
不得用于商业用途,请在下载后24小时内删除
⑵ Mongodb 怎么设计结构,存储历史价格最合理
这个问题需要考虑的太多 首先你的了解关系数据库的设计模式。 mongodb的数据模型的设计和关系数据库的有些不同。(原理是一样的) 新系统设计和基于原有系统的设计也可能不同 你找找看,基本上每本关于mondodb的参考是基本上都有一些介绍 不过需要自己总结总结,根据自己的业务具体分析
⑶ NoSQL自动生成上千万的数据可以有哪些方法
1. CouchDB
所用语言: Erlang
特点:DB一致性,易于使用
使用许可: Apache
协议: HTTP/REST
双向数据复制,
持续进行或临时处理,
处理时带冲突检查,
因此,采用的是master-master复制(见编注2)
MVCC – 写操作不阻塞读操作
可保存文件之前的版本
Crash-only(可靠的)设计
需要不时地进行数据压缩
视图:嵌入式 映射/减少
格式化视图:列表显示
支持进行服务器端文档验证
支持认证
根据变化实时更新
支持附件处理
因此, CouchApps(独立的 js应用程序)
需要 jQuery程序库
最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。
例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。
(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)
2. Redis
所用语言:C/C++
特点:运行异常快
使用许可: BSD
协议:类 Telnet
有硬盘存储支持的内存数据库,
但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)
Master-slave复制(见编注3)
虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。
INCR & co (适合计算极限值或统计数据)
支持 sets(同时也支持 union/diff/inter)
支持列表(同时也支持队列;阻塞式 pop操作)
支持哈希表(带有多个域的对象)
支持排序 sets(高得分表,适用于范围查询)
Redis支持事务
支持将数据设置成过期数据(类似快速缓冲区设计)
Pub/Sub允许用户实现消息机制
最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。
例如:股票价格、数据分析、实时数据搜集、实时通讯。
(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为
Master-slave复制,通常应用在需要提供高可用性的服务器集群。)
3. MongoDB
所用语言:C++
特点:保留了SQL一些友好的特性(查询,索引)。
使用许可: AGPL(发起者: Apache)
协议: Custom, binary( BSON)
Master/slave复制(支持自动错误恢复,使用 sets 复制)
内建分片机制
支持 javascript表达式查询
可在服务器端执行任意的 javascript函数
update-in-place支持比CouchDB更好
在数据存储时采用内存到文件映射
对性能的关注超过对功能的要求
建议最好打开日志功能(参数 –journal)
在32位操作系统上,数据库大小限制在约2.5Gb
空数据库大约占 192Mb
采用 GridFS存储大数据或元数据(不是真正的文件系统)
最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/rece功能;需要对大数据库有性能要求;需要使用
CouchDB但因为数据改变太频繁而占满内存的应用程序。
例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。
4. Riak
所用语言:Erlang和C,以及一些Javascript
特点:具备容错能力
使用许可: Apache
协议: HTTP/REST或者 custom binary
可调节的分发及复制(N, R, W)
用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。
使用JavaScript或Erlang进行 Map/rece
连接及连接遍历:可作为图形数据库使用
索引:输入元数据进行搜索(1.0版本即将支持)
大数据对象支持( Luwak)
提供“开源”和“企业”两个版本
全文本搜索,索引,通过 Riak搜索服务器查询( beta版)
支持Masterless多站点复制及商业许可的 SNMP监控
最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理
bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。
例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。
5. Membase
所用语言: Erlang和C
特点:兼容 Memcache,但同时兼具持久化和支持集群
使用许可: Apache 2.0
协议:分布式缓存及扩展
非常快速(200k+/秒),通过键值索引数据
可持久化存储到硬盘
所有节点都是唯一的( master-master复制)
在内存中同样支持类似分布式缓存的缓存单元
写数据时通过去除重复数据来减少 IO
提供非常好的集群管理 web界面
更新软件时软无需停止数据库服务
支持连接池和多路复用的连接代理
最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序
例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)
6. Neo4j
所用语言: Java
特点:基于关系的图形数据库
使用许可: GPL,其中一些特性使用 AGPL/商业许可
协议: HTTP/REST(或嵌入在 Java中)
可独立使用或嵌入到 Java应用程序
图形的节点和边都可以带有元数据
很好的自带web管理功能
使用多种算法支持路径搜索
使用键值和关系进行索引
为读操作进行优化
支持事务(用 Java api)
使用 Gremlin图形遍历语言
支持 Groovy脚本
支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可
最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别
例如:社会关系,公共交通网络,地图及网络拓谱
7. Cassandra
所用语言: Java
特点:对大型表格和 Dynamo支持得最好
使用许可: Apache
协议: Custom, binary (节约型)
可调节的分发及复制(N, R, W)
支持以某个范围的键值通过列查询
类似大表格的功能:列,某个特性的列集合
写操作比读操作更快
基于 Apache分布式平台尽可能地 Map/rece
我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)
最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用
Apache的软件被解雇)
例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析
8. HBase
(配合 ghshephard使用)
所用语言: Java
特点:支持数十亿行X上百万列
使用许可: Apache
协议:HTTP/REST (支持 Thrift,见编注4)
在 BigTable之后建模
采用分布式架构 Map/rece
对实时查询进行优化
高性能 Thrift网关
通过在server端扫描及过滤实现对查询操作预判
支持 XML, Protobuf, 和binary的HTTP
Cascading, hive, and pig source and sink moles
基于 Jruby( JIRB)的shell
对配置改变和较小的升级都会重新回滚
不会出现单点故障
堪比MySQL的随机访问性能
最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。
例如: Facebook消息数据库(更多通用的用例即将出现)
编注4:Thrift
是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。
当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。
⑷ MongoDB与MySQL:如何选择
MongoDB和MySQL分别是领先的开源NoSQL和关系数据库。哪个最适合您的应用程序?
在1990年代的互联网泡沫时期,用于Web应用程序的一种通用软件堆栈是LAMP,它最初代表Linux(OS),Apache(Web服务器),MySQL(关系数据库)和PHP(服务器编程语言)。MySQL是首选的数据库,主要是因为它是免费的开源代码,并且具有良好的读取性能,非常适合从数据库动态生成网站的“ Web 2.0”应用程序。
之后,代表MongoDB(文档数据库),Express(Web服务器),AngularJS(前端框架)和Node.js(后端JavaScript运行时)的MEAN堆栈开始流行。除其他原因外,MEAN堆栈很有吸引力,因为您需要了解的唯一语言是JavaScript。与等效的LAMP堆栈相比,它还需要更少的RAM。
MySQL AB的Monty Widenius和David Axmark最初于1994年开始开发MySQL。产品名称中的“ My”是指Widenius的女儿,而不是英语单词“ my”。MySQL旨在与mSQL(又名Mini)兼容。 SQL),并添加了SQL查询层和开放源代码许可(实际上是专有和GPL双重许可)。MySQL的公共发行版于1996年底开始,并且每年或每两年持续发行一次。MySQL是当前最受欢迎的关系数据库。
Sun Microsystems于2008年以10亿美元的价格收购了MySQL AB,Oracle于2010年收购了Sun。在Oracle收购MySQL的广泛关注中,Widenius在收购Oracle之前就将MySQL 5.5合并到了MariaDB中。MariaDB努力维护与Oracle MySQL版本的兼容性。
与功能更强大的商业关系数据库(例如Oracle数据库,IBM DB / 2和Microsoft SQL Server)相比,MySQL最初是一个相当低端的关系数据库,尽管它足以成为动态网站的后备存储。多年来,它增加了您希望从关系数据库获得的大多数功能,包括事务,参照完整性约束,存储过程,游标,全文索引和搜索,地理索引和搜索以及群集。
尽管MySQL现在支持“大数据库”功能,例如主从部署,与Memcached一起使用以及水平分片,但它仍通常用于中小型部署。将MySQL扩展到多个从属服务器可以提高读取性能,但是只有主服务器才能接受写请求。
AWS提供了两种形式的MySQL即服务,即Amazon RDS和Amazon Aurora。后者具有更高的性能,可以处理TB级的数据,更新副本的延迟时间更短,并且可以直接与Oracle数据库和SQL Server竞争。
MongoDB是高度可伸缩的操作文档数据库,可在开源版本和商业企业版本中使用,它可以在本地运行或作为托管云服务运行。托管云服务称为MongoDB Atlas。
MongoDB无疑是NoSQL数据库中最受欢迎的数据库。它的文档数据模型为开发人员提供了极大的灵活性,而其分布式体系结构则提供了很好的可伸缩性。因此,通常选择MongoDB用于必须管理大量数据,得益于水平可伸缩性并处理不适合关系模型的数据结构的应用程序。
MongoDB是一个基于文档的存储,在其之上还具有一个基于图形的存储。MongoDB实际上并不存储JSON:它存储BSON(二进制JSON),该扩展了JSON表示(字符串)以包括其他类型,例如int,long,date,浮点,decimal128和地理空间坐标。
MongoDB可以使用数据的类型生成正确的索引类型,从而在数据的单个副本上生成多模式图形,地理空间,B树和全文本索引。MongoDB使您可以在任何文档字段上创建索引。MongoDB 4具有多文档事务,这意味着即使必须标准化数据设计,您仍然可以获得ACID属性。
默认情况下,MongoDB使用动态模式,有时称为无模式。单个集合中的文档不需要具有相同的字段集,并且字段的数据类型可以在集合中的不同文档之间有所不同。您可以随时使用动态模式更改文档结构。
但是,可以使用架构治理。从MongoDB 3.6开始,MongoDB支持JSON模式验证,您可以在验证器表达式中将其打开。
在LAMP和MEAN堆栈上存在很多变化。例如,您可以在Windows(WAMP)或MacOS(MAMP)上运行而不是Linux OS。您可以运行IIS(WIMP),而不是Windows上的Apache Web服务器。
您可以运行PostgreSQL或SQL Server,而不是LAMP堆栈中的MySQL关系数据库。如果您需要全球分布,则可以运行CockroachDB或Google Cloud Spanner。可以使用Perl或Python代替PHP语言。如果要使用Java或C#进行编码,则需要考虑单独的堆栈系列。
您可以运行Couchbase或Azure Cosmos DB以获得更好的全局分布,而不是MEAN堆栈中的MongoDB文档数据库。可以使用十二个Node.js Web服务器框架中的任何一个来代替Express 。除了AngularJS前端框架,您还可以运行Angular 2或React。
选择数据库时要问的最重要的问题是:
这些问题中的几个会趋于缩小数据库的选择范围,但是与制定LAMP堆栈时相比,我们有更多选择。如果您要构建一个应用程序,并且该应用程序必须在99.999%的时间内对全世界的用户都具有高度的一致性,那么只有少数几个数据库适合您。如果您的应用程序将在工作日的上午9点至下午6点在一个国家/地区使用,并且可以容忍最终的一致性,那么几乎所有数据库都可以使用,尽管某些数据库对于开发人员和操作员而言更容易,而某些数据库则可以为您的主要使用场景提供更好的性能。
虽然LAMP和MEAN堆栈一次是Web应用程序的良好解决方案,但现在都不是最佳选择。而不是盲目采用任何一种,您应该仔细考虑用例,并找到一种可在可预见的将来为您的应用程序服务的体系结构。
您什么时候需要关系数据库(例如MySQL)用于新应用程序?除了对标准SQL的明显支持外,关系数据库本身将数据强制为具有一致的强类型字段的表格模式,并且只要您利用规范化就可以帮助您避免数据重复。
另一方面,如果您还需要偶尔的自由格式文档,则MySQL和许多其他关系数据库也支持RFC 7159定义的JSON数据。如果您还想使用XML文档和XPath或XSLT,则大多数关系数据库都可以提供这种能力。
您何时需要像MongoDB这样的文档数据库?如果您的主要用例需要允许使用自由格式的数据,在文档之间更改类型的字段,随时间变化的架构或嵌套的文档,则NoSQL数据库将满足要求。另外,如果您的应用程序是用JavaScript编写的,那么文档数据库的JSON格式将很自然。
作者: Martin Heller是InfoWorld的特约编辑和审稿人。他曾担任Web和Windows编程顾问,从1986年至2010年开发数据库,软件和网站。最近,他担任Alpha Software技术和教育副总裁以及Tubifi董事长兼首席执行官。
⑸ mongodb 企业版 收费吗
您好,我来为您解答:
mongodb 是免费的。
MongoDB社区版本和企业版本差异主要体现在安全认证、系统认证等方面。
如果我的回答没能帮助您,请继续追问。
⑹ Python爬虫可以爬取什么
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
以上就是我的回答,希望对你有所帮助,望采纳。
⑺ 如何用java redis hbase
比如 MongoDB 和 CouchDB。每个数据存储都有其优势和劣势,特别是当应用于特定领域时。 本期的 Java 开发 2.0 关注的是 Redis,一种轻量级键值对数据存储。多数 NoSQL 实现本质上都是键值对,但是 Redis 支持非常丰富的值集,其中包括字符串、列表、集以及散列。因此,Redis 通常被称为数据结构服务器。Redis 也以异常快速而闻名,这使得它成为某一特定类型使用案例的最优选择。 当我们想要了解一种新事物时,将其同熟知的事物进行比较可能会有所帮助,因此,我们将通过对比其与 memcached 的相似性以开启 Redis 探索之旅。接着我们将介绍 Redis 的主要功能,这些功能可以使其在某些应用场景可以胜过 memcached。最后我将向您展示如何将 Redis 作为一个传统数据存储用于模型对象。Redis 和 memcached Memcached 是一个众所周知的内存对象缓存系统,通过将目标键和值导入内存缓存运行。因此,Memcached 能回避读取磁盘时发生的 I/O 成本问题。在 Web 应用程序和数据库之间粘贴 memcached 时会产生更好的读取性能。因此,对于那些需要快速数据查询的应用程序,Memcached 是一个不错的选择。其中的一个例子为股票查询服务,需要另外访问数据库获取相对静态数据,如股票名称或价格信息。 MemcacheDB 将Redis 与 memcached 相比较并不公平,它与 MemcacheDB 相比要好的多,MemcacheDB 是一个分布式键值对存储系统,专为数据持久化而设计。MemcacheDB 与 Redis 较为相似,其新增优势可以使其轻松地与 memcached 实现的客户端进行通信。 但是memcached 也有其局限性,其中一个事实就是它所有的值均是简单的字符串。Redis 作为 memcached 的替代者,支持更加丰富的功能集。一些基准 (benchmarks) 也表明 Redis 的速度要比 memcached 快很多。Redis 提供的丰富数据类型使其可以在内存中存储更为复杂的数据,这是使用 memcached 无法实现的。同 memcached 不一样,Redis 可以持久化其数据。 Redis 解决了一个重大的缓存问题,而其丰富的功能集又为其找到了其他用途。由于 Redis 能够在磁盘上存储数据以及跨节点复制数据,因而可以作为数据仓库用于传统数据模式(也就是说,您可以使用 Redis,就像使用 RDBMS 一样)。Redis 还经常被用作队列系统。在本用例中,Redis 是备份和工作队列持久化存储(利用 Redis 的列表类型)的基础。GitHub 是以此种方法使用 Redis 的大规模基础架构示例准备好 Redis,立即开始! 要开始使用 Redis,您需要访问它,可以通过本地安装或者托管供应商来实现访问。如果您使用的 MAC,安装过程可能就不那么简单。
⑻ mongodb数据库有哪些优势
1. 文档存储
数据存储以BSON/JSON文档,这对于Web应用程序有很大的意义。开发者API喜欢以JSON形式传输,这使得整个项目的数据表示可采用统一的模型。所有这一切都无需任何前期架构设计。
2. 可扩展性
MongoDB被用在一些规模庞大的环境中,FourSquare/Craiglist都在使用它。通过分片数据缩放处理理论上可实现更高的吞吐量。
3. 简单的复制
就像分片技术一样,MongoDB范围内复制过程同样简单好用,在副本机器上还有大量的复制选项。灵活的功能可满足用户应用的需求。
4. 易于查询
MongoDB以文档的形式存储数据,不支持事务和表连接。因此查询的编写、理解和优化都容易得多。简单查询设计思路不同于SQL模式,嵌入文档在特定的环境下可得到更好的查询,然而这需要先加入集合。如果需要执行多个请求到数据库则需要加入其到客户端。在MongoDB时ODM工具(如Doctrine2)将发挥自身的优势。
5. 安全性
由于MongoDB客户端生成的查询为BSON对象,而不是可以被解析的字符串,所以可降低受到SQL注入的攻击的危险。最常见的攻击类型为针对Web应用程序的攻击,在MongoDB上使用Doctrine2 ODMs 查询语言可减轻攻击风险。
6. 支持
用户在选择数据库时总是喜欢积极和充满活力的,这点非常重要。MongoDB在业界有非常大的影响力,用户也会定期的组织活动。MongoDB的标签在StackOverFlow是非常活跃的。你永远不会陷入困境,因为总有人与你讨论并解决问题。
7. 价格
MongoDB是免费的!
当然远不止这些优势,但是也有很多劣势。
⑼ 什么是金融数据
这个包含蛮多的,以股票为例,有k线啊,股本信息,tick数据等等,建议
看一下Tushare数据的网站,然后用一下数据,做一点分析,就知道什么是金融数据了。