当前位置:首页 » 交易知识 » 股票量化交易用什么语言比较好
扩展阅读
皇马科技的股票代码 2025-06-29 09:02:51

股票量化交易用什么语言比较好

发布时间: 2021-05-08 16:58:12

⑴ 量化算法交易员一般使用什么语言为股票趋势编程 MATLAB

一、三个指数的今日走势,看量价,看走势的轻重缓急,关键点位。
二、行业板块指数的涨跌幅,资金交易量,这个与指数结合起来看,看看大盘是健康的还是畸形的。
三、看个股,因为帮客户做风险控制,所以主要看客户的个股,计算客户明日最大亏损值,是否在可以承受范围之内。

⑵ 做量化交易选择什么语言好呢

量化交易,就是把人能够识别的信息变成数字,输入给计算机程序处理,辅助或者代替人类的思考和交易决策。

初学者碰到的第一个问题就是工具的选择。首先大部分交易员本来不会写程序,选择任何一个语言进行策略开发,都有不小的学习成本。更重要的是,选择了一门语言,接下来开发环境、人员招聘、数据接口与平台、甚至同类人群之间的交流、遇到问题后的支持,都跟着被“套牢”。所以从一开始就必须慎重对待。

先给出答案:对于还没有确定一套固定量化环境的,建议用Python。

量化交易员面临的大致选择有:C/C++/java/C#/R/Matlab/excel等。我们从以下几个方面考虑简单做个对比。

注意:这里假设你团队规模在50人以下。

1 学习成本和应用的广泛性

C、C++的特点是速度最快,但要想用好,必须对计算机底层架构、编译器等等有较好的理解,这是非计算机专业的人很难做到的,对于做量化交易来说更是没有必要。

Java本来是SUN的商业产品,有学习成本和体系的限制,也不适合。

Excel面对GB级别的数据无能为力,这里直接排除。

Python、R和Matlab学起来都简单,上手也快,可以说是“一周学会编程”。但R和Matlab一般只用来做数据处理,而Python作为一门强大的语言,可以做任何事,比如随时写个爬虫爬点数据,随时写个网页什么的,更何况还要面对处理实时行情的复杂情况。

2 开始做量化分析后,哪个用起来碰到问题最少,最方便省事?

用历史数据的回测举例。假设我们有2014年所有股票的全年日线,现在我们想看看600001的全年前10个最高股价出现在什么时候。python世界有个强大的pandas库,所以一句话就解决问题:

dailybar[dailybar [‘code’]==‘600001’].sort_values([‘close’].head(10)

R/Mathlab等科学语言也可以做到。

C/C++没有完备的第三方库。如果为了做大量的计算,要自己实现、维护、优化相应的底层算法,是一件多么头疼的事。

Python从一开始就是开源的,有各种第三方的库可以现成使用。这些底层功能库让程序员省去了“造轮子”的时间,让我们可以集中精力做真正的策略开发工作。

3 现在我们更进一步,要做实时行情分析和决策

以A股的入门级L1数据为例,每3秒要确保处理完3000条快照数据,并完成相应的计算甚至下单。这样的场景,C和C++倒是够快了。所以行情软件比如大智慧、同花顺等客户端都是使用高效率的语言做的,但像客户端那样的开发量,绝大部分量化交易机构没能力也没必要去做吧。

python的速度足够对付一般的实时行情分析了。其底层是C实现的,加上很多第三方的C也是C实现,尽管其计算速度比不上原生C程序,但对我们来说是足够啦。

4 quant离职了,他的研究成果怎么办

Python是使用人群最多、社区最活跃的语言之一,也是最受quant欢迎的语言之一。如果你是老板,你能更容易地招聘到优秀人材,享受到python社区带来的便利。

附几个量化中常用的python库:

- Pandas:

天生为处理金融数据而开发的库。几乎所有的主流数据接口都支持Pandas。Python量化必备。

- Numpy:

科学计算包,向量和矩阵处理超级方便

- SciPy:

开源算法和数学工具包,与Matlab和Scilab等类似

- Matplotlib:

Python的数据画图包,用来绘制出各类丰富的图形和报表。

PS: Python也是机器学习领域被使用最多的语言之一。像tensorflow、scikit-learn、Theano等等对python都有极好的支持。

⑶ 量化交易,哪家的股票数据好

量化交易的话,其实对于数据这块真心很厉害的,毕竟现在这个股票数据这块的话是可以直接做到的啊

⑷ 股票量化交易是什么

量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交易分为量化分析和程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标

⑸ 国内量化交易的主流开发语言有哪些

程序化交易交易策略核东西种种策略实际总结效交易式变按条件触发程序化执行步骤效并收益高靠经验或者看K线图类涉及数、理甚至编写代码等等专业领域些团队组些模型都要自析摸索否则抄效家工作劲呢都作股票

⑹ 什么是股票量化交易

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

⑺ 股票量化交易有用吗哪一家做的比较好

现在市面上的量化交易APP大多是分析软件,真正能够直接参与交易的很少。相对于人性操作来说,量化交易刨除人性,做计划之内的事情。真正意义上实现价值投资,比纯人为的追涨杀跌要好很多。
我用过的壳子量化这个软件还是不错的,他里面有多个模型,可以自己选择。针对新人,里面支持模拟,可以先使用模拟盘体验一下量化交易带来的不同。

⑻ 做量化交易一般用什么软件

需要懂一些数学模型,比如统计分析、人工智能算法之类的,他的本质是利用数学模型分析数据潜在的规律寻找交易机会,并利用计算机程序来搜寻交易时机以及完成自动化交易。并没有现成的软件可以做这个,因为它需要一个搭建一个专业的平台,这不是一个人可以完成的。

国内有一些软件,比如大智慧提供数量分析,还有一些软件提供股票、期货的程序化交易。但是实际上这并不是真正意义上的量化交易。事实上,做一款纯粹的适合个人投资者的量化投资软件,难度是非常大的,因为量化策略并不想传统的基本面、技术面那样存在已有既定的必然规律。他需要跨越多学科,多领域去挖掘数据的规律,然后利用得出的规律进行交易。但是不同时间、空间的数据的潜在规律并不一致,所以对量化过程进行标准化是一件很难完成的事情。

如果是计算机或者数学专业的人士,可以考虑使用C、C++、SQL等语言,其他的可以使用MATLAB/SAS 等软件。不管是哪一种软件,要实现量化交易,肯定是需要一定的建模基础和编程基础的,其中最重要的东西是数学能力。