⑴ 为什么量化交易总是赚不到钱
量化投资主要应用于期货交易、ETF套利、条件选股、权证套利交易等
图片来源:凯纳量化投资
“你炒期货吗?”
“不炒,我赚的是血汗钱,您赚的是心跳钱。”
这是一位期货门外汉跟一位期货投资者的对话。的确,期货因其高风险高收益的特征,参与者很多都是心惊肉跳的。不过,近年来引入国内的量化交易,正逐渐改变这一情况。
上周六,东莞本土唯一期货公司——华联期货联合量化交易的相关投资机构,在东莞举办了一场题为“量化交易,打开财富之门”的量化交易策略交流会。与一般的投资报告会人流稀少相反,该交流会可谓人满为患,原定的百余人参与的会议室,最终挤进了近200名投资者,以至酒店空调开到最大仍显十足燥热。
近几年量化交易发展迅猛
对多数普通投资者而言,量化交易仍是一个较为陌生的概念,但该模式已在国内流行了数十年。2010年,国内股指期货上市,成交量在两年内增加了1.4倍,为量化交易提供了极佳的交易标的,国内量化交易便快速发展。
据华联期货介绍,2012年上半年,量化交易量占国内证券市场总交易量8%左右,但占股指期货交易量的比例已达20%左右。目前,绝大部分的券商和期货公司开始进行量化交易,部分私募公司和个人投资者也开始使用量化交易产品。
事实上,3年多来,在股市连续下跌的大环境中,传统投资策略纷纷失效,而一批以股指期货、商品期货、债券为投资标的,以量化投资、程序化交易为工具的新兴投资方式,却在国内投资市场崭露头角,并实现了较为稳定的收益。
“传统投资策略依靠人的主观感觉来投资;而量化投资是根据数学统计模型,由计算机来实现自动化交易。”国信证券东莞营业部财富管理中心负责人林玉伟指出,量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
据华联期货介绍,量化投资目前主要应用于期货交易、ETF套利、条件选股、权证套利交易等,主流平台包括文华财经、交易开拓者、金字塔,此外Multicharts、龙软、高手、金钱豹、Yesterday等平台在业内的使用也较为广泛。
量化投资东莞“试水”告捷
在东莞本土,也有多家机构在试水量化投资,包括证券公司、期货公司和私募投资公司,从目前情况来看,可谓“试水”告捷。
如华联期货去年推出了“金莞家”程序化系列产品,其中“智赢股指组合策略”是其首个专项个性化交易模型组合,该模型组合通过对两年多来股指期货运行特点进行量化分析,形成了八套独有的程序化交易模型,模型运行以来,年化收益率最高的逾60%,最低的也有26%,但最大回撤不足10%。
国信证券东莞营业部则成立专门的“量化投资中心”,该营业部去年就有20多个不同时期参与股指期货程序化交易的客户,表现最好的账户年化收益率近40%,所有账户全部战胜大盘。
发行了国内首只多重策略对冲基金的东莞莞香资本投资公司,更是量化投资的“拥趸”,该公司目前的专户产品全部采取量化投资方式,且收益不错。如其旗下某专户理财产品,2012年6月19日-2013年5月19日的净值增长达41%。
“量化产品的特点就是任何行情阶段都能盈利。”国信证券东莞营业部投资顾问蔡恩侠告诉记者,量化产品一般都是多空对冲,因此无论牛熊市均能盈利,不过其也有弱点,即牛市跑不赢一般的股票类投资产品,“2007年大牛市,也就30%左右的收益,但2008年大熊市也有15%左右的收益。”
“资金不会一直朝一个方向直线形地前进,资金增值是一个艰难的曲折前进过程。”莞香资本CEO江国栋则提醒道,回撤即是资金增长行进中的停顿,也可看做是期货交易的机会成本。“因此,必须正确看待策略参数优化结果,不刻意追求最高收益,不过度拟合行情;同时,坚持正确的交易理念和交易方法,严格执行和坚持不懈是持续盈利的前提。”
量化投资的应用涵盖几乎所有金融投资领域,是在计算机和网络的支持下,把人脑投资策略编写成语言程序,由计算机触发买卖条件,完成自动化交易的投资方式,实际上是传统投资的严谨化。
投资辞典
何谓量化交易
量化交易(Quantitative Trading),即使用现代统计学和数学工具,借助计算机建立数量模型,制定策略,严格按照既定策略交易。具体又可分为高频交易和非高频交易,其中非高频交易适合一般个人投资者和中小机构。
⑵ 股票的价格和上市公司盈利能力的关系
影响股票价格的因素很多,盈利分红只是其中影响,有些ST股资不抵债股价照样很高,有些好公司净资产高照样股价低。题材和预期影响股价。买股票是买预期,不是买净资产。
⑶ 量化交易股票能赚钱吗
量化投资能不能赚钱不在于量化策略本身,因为策略是按照你的思路进行交易的,如果你的思路能赚钱那么量化策略一定是赚钱的,如果你的思路不能赚钱再好的量化也是赔钱。量化只是执行的机器来规避人性的弱点,可以去量化贴吧学一些资料。
⑷ 什么是股票的净资产什么是股票的盈利能力
股票净资产=公司总资本除以全部流通股数.股票的盈利能力就是指公司的相对赚钱能力.如1块钱的公司每年产生1块钱的利润,而另一个公司有总资产10块钱,每年产生5块钱的利润,那前一个公司的盈利能力显然好于后者.
巴非特靠分析公司本身/行业等的发展前景买卖股票,而这绝大多数人是无法分析的.
出现巨大涨跌,有时是公司出现突发利好,被公众所知,如上海要建迪斯尼乐园,相关股票会被大家追捧买入.更多的时候是控制多数流通股份的"庄"人为拉升股票价格.伺机在高价卖出获得买卖的差额而盈利.有时庄 故意散布谣言说此股有大利好,吸引小股民买.他借机卖出.
⑸ 什么是股票量化交易
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
⑹ 股票量化交易自动交易, 比人工交易更容易盈利吗
首先计算机的普及,连手机都已经可以自己编写指标公式,量化交易是一定的,不论你是散户还是机构,量化交易是必须要回的,这是现在交易者的基本功,不论你是技术分析还是基本面分析,
举个例子,价值投资者分析财务报表,那如何挑选出连续10年盈利的上市公司,总不能把这三千多家公司10年财务报表都翻一边吧,但要会简单的量化,几行代码就解决了。
但量化交易不一定是自动交易可以手动交易量化分析。
⑺ 量化投资
没有你想的书
我多年来都有关注这方面的书 可是也没有在国内找到
数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:
一、估值与选股
估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。
选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:
资产配置方法与模型
资产配置类别 资产配置层次 资产配置方法 资产配置模型
战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型
战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略
基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。
多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。
动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。
二、资产配置
资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。资产配置的主要方法及模型如下:
战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。
三、股价预测
股价的可预测性与有效市场假说密切相关。如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。
主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。
四、绩效评估
作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。
绩效评估模型 / 指标
绩效评估准则
择时 / 股能力
业绩归因分析
风险调整收益
业绩持续性
Fama 业绩分解
模型 / 指标
T-M 模型
H-M 模型
GII 模型
C-L 模型
资产配置收益
证券选择收益
行业选择收益
行业内个股选择收益
RAROC
Sharp, Stutzer
Treynor, Jensen
, ,
双向表分析
时间序列相关性
总风险收益
系统风险收益
分散化投资收益
五、基于行为金融学的投资策略
上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。
行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。
六、程序化交易与算法交易策略
根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。
算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。
综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。
⑻ 股票盈利能力指标有哪些
1、目前,股票盈利能力指标有:相对强弱指标(RSI)、随机指标(KD)、趋向指标(DMI)、平滑异同平均线(MACD)、能量潮(OBV)、心理线、乖离率等。这些都是很著名的技术指标,在股市应用中长盛不衰。而且,随着时间的推移,新的技术指标还在不断涌现。包括:MACD(平滑异同移动平均线)DMI趋向指标(趋向指标)DMA EXPMA(指数平均数)TRIX(三重指数平滑移动平均)TRIX(三重指数平滑移动平均)BRAR CR VR(成交量变异率)OBV(能量潮)ASI(振动升降指标)EMV(简易波动指标)WVAD(威廉变异离散量)SAR(停损点)CCI(顺势指标)ROC(变动率指标)BOLL(布林线)WR(威廉指标)KDJ(随机指标)RSI(相对强弱指标)MIKE(麦克指标)
2、股票指标是属于统计学的范畴,依据一定的数理统计方法,运用一些复杂的计算公式,一切以数据来论证股票趋向、买卖等的分析方法。主要有动量指标、相对强弱指数、随机指数等等。由于以上的分析往往需要一定的电脑软件的支持,所以对于个人实盘买卖交易的投资者,只作为一般了解。但值得一提的是,技术指标分析是国际外汇市场上的职业外汇交易员非常倚重的汇率分析与预测工具。
⑼ 股票量化交易有用吗哪一家做的比较好
现在市面上的量化交易APP大多是分析软件,真正能够直接参与交易的很少。相对于人性操作来说,量化交易刨除人性,做计划之内的事情。真正意义上实现价值投资,比纯人为的追涨杀跌要好很多。
我用过的壳子量化这个软件还是不错的,他里面有多个模型,可以自己选择。针对新人,里面支持模拟,可以先使用模拟盘体验一下量化交易带来的不同。