当前位置:首页 » 行情解析 » 股票分析数据挖掘
扩展阅读
ntt股票代码 2025-08-12 09:11:45
长江汽车股票代码是多少 2025-08-12 07:34:19

股票分析数据挖掘

发布时间: 2021-04-14 04:18:21

A. “基于数据挖掘的股票交易分析--模型分析” 这个题目,是什么意思 哪位哥们,能给点具体解释么

很难写,主要牵涉到数据挖掘(软件)和股票交易两方面的专业。数据挖掘需要设计软件进行建模,而股票交易需要进行实证(博士论文都可以写了)。
建议:可以写基于统计挖掘的股票交易分析--模型分析,这样就简单多了,只需要在股票软件上得出一些统计数据,然后进行验证就可以了,可操作性强。

B. 求推荐一个好的股票数据分析网站

大散户——股市数据挖掘网,基本的一些数据分析都有了。

C. 什么是数据挖掘

数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1. 数据挖掘能做什么?
1)数据挖掘能做以下六种不同事情(分析方法):
· 分类 (Classification)
· 估值(Estimation)
· 预言(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚集(Clustering)
· 描述和可视化(Des cription and Visualization)
2)数据挖掘分类

以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
· 直接数据挖掘

目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以

理解成数据库中表的属性,即列)进行描述。
· 间接数据挖掘

目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系
· 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
· 分类 (Classification)

首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分

类模型,对于没有分类的数据进行分类。

例子:
a. 信用卡申请者,分类为低、中、高风险
b. 分配客户到预先定义的客户分片

注意: 类的个数是确定的,预先定义好的
· 估值(Estimation)

估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的

输出;分类的类别是确定数目的,估值的量是不确定的。

例子:
a. 根据购买模式,估计一个家庭的孩子个数
b. 根据购买模式,估计一个家庭的收入
c. 估计real estate的价值

一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的

连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运

用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
· 预言(Prediction)

通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用

于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。

预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时

间后,才知道预言准确性是多少。
· 相关性分组或关联规则(Affinity grouping or association rules)

决定哪些事情将一起发生。

例子:
a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)

b. 客户在购买A后,隔一段时间,会购买B (序列分析)
· 聚集(Clustering)

聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先

定义好的类,不需要训练集。

例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群

聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一

类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,

回答问题,可能效果更好。
· 描述和可视化(Des cription and Visualization)

是对数据挖掘结果的表示方式。
2.数据挖掘的商业背景

数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有

价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格
1)数据挖掘作为研究工具 (Research)
2)数据挖掘提高过程控制(Process Improvement)
3)数据挖掘作为市场营销工具(Marketing)
4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)

3.数据挖掘的技术背景
1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力
2)数据挖掘和机器学习(Machine Learning)
· 机器学习是计算机科学和人工智能AI发展的产物
· 机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决

策树)
· 数据挖掘由来

数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴

的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预

言模型的经济学家之间没有技术的重叠。
3)数据挖掘和统计

统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等
4)数据挖掘和决策支持系统
· 数据仓库
· OLAP(联机分析处理)、Data Mart(数据集市)、多维数据库
· 决策支持工具融合

将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。
4. 数据挖掘的社会背景

数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上

,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中

神秘,它不可能是完全正确的。

客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。比如说,在

美国对银行信用卡客户信用评级的模型运行得非常成功,但是,它可能不适合中国

D. 国内有哪些数据分析和数据挖掘的牛人

数据分析的顶级牛人,是被各国顶级赌场拉黑名单的。

次一等的,是自己玩投放做点大家都会但都觉得不赚钱却只有他自己能闷声赚钱的。

再往下,股票证券的自动高频交易系统,一水的大数据。广告优化平台,类似芒果移动,mediav这样的,以及推荐平台 百分点这样的,靠数据吃饭的公司。

E. 股票数据采集难吗

要想自己采也行,我之前采过股市数据。用的是ForeSpider这个软件。这个软件他自身有数据挖掘分析功能,自己就进行聚类分类,统计分析了,采集的结果入库后可以形成分析报表,直接浏览就行了,还是很方便的,你可以去看看。操作也是不难,非计算机专业的人也能使。
希望我的回答对你有帮助。

F. 股票市场搞数据挖掘,数据分析来炒股有没机会

有机会,而且机会不小,但是我等散户靠数据分析,可能自身实力差的太悬殊了。
硬件设备就不达标哦。

G. 股票的数据挖掘用什么算法最合适

写个贝叶斯分类算法
对文本进行分类

H. 用数据挖掘的知识分析一支股票,论文最好

也要有好的软件去辅助自己的啊

I. 如何获得股票行情数据,自己编程处理进行数据挖掘

行情数据可到通达信或者同花顺观看

J. 请通俗的讲一下什么是数据挖掘

利用数据挖掘,我们还可以做非常多的事情。

1.发现数据项之间的相关性

比如我们拿到各个城市环境、人口、交通等数据,就可以通过相关性分析来看人均汽车保有量,和空气质量各个指标之间的关系,从而定量化地帮助制定产业经济和环保政策。比如要不要进行更严厉的限购,要不要收取为其的排放税等等。

2.把数据对象进行聚类

比如我们知道大量的人在电子商务网络消费数据,我么就可以根据消费的特征把他们聚成很多类,每一类人我们制定不同的营销手段,从而能够取得销售量的提升。比如电信运营商对人群进行聚类,然后针对性地推出电话套餐。

3.把数据对象进行分类

当我们已经有了分类之后,来了一些新的数据之后,我们可以把他分到不同不同的类去。比如医疗影像上查看肺部的病灶,可能是肺结核、可能是早起肺癌,中晚期肺癌,可能是肺上的疖结,可能是愈合的病灶等等,来了一张新的片子,我们可以通过图像处理,就把它分到不同的类别(当然这需要我们提前对很多片子的数据进行学习)。

4.预测缺失数据或者未来的数据

很多数据集中,比如生物数据,我们已知的知识全部数据集中的一小部分,这需要我们做一些事情去预测这些数据。还有一些,想大选、股票价格预测、河流径流量预测、城市用电量预测等,这些就是对未来数据的预测。