『壹』 聚类分析在基因表达的数据挖掘分析中的地位有多大
数据挖掘有三个主要的应用方向:关联/相关分析、分类与预测、聚类。
除了你提到的那些方面,就是关联分析了。
所谓基因表达的聚类分析的应用,应该主要是相似基因的聚类吧。不好量化说,但应该是一个主要的方向。
『贰』 聚类分析解决股票投资问题有什么意义
炒股选择辅助软件,请选择红三兵股票决策系统、
『叁』 聚类分析的意义是什么
1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。
2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。
例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。
3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。
(3)聚类分析在股票分析中的优势扩展阅读:
聚类效果的检验:
一、聚类分析后得到的每个类别是否可以进行有效的命名,每个类别的特征情况是否符合现实意义,如果研究者可以结合专业知识对每个聚类类别进行命名,即说明聚类效果良好,如果聚类类别无法进行命名,则需要考虑重新进行聚类分析。
二、使用判别分析方法进行判断,将SPSS生成的聚类类别变量作为因变量(Y),而将聚类变量作为自变量(X)进行判别分析,判别分析具体分析聚类变量与类别之间投影关系情况,如果研究人员对聚类分析效果非常在乎,可以使用判别分析进行分析。
三、聚类分析方法的详细过程说明,描述清楚聚类分析的科学使用过程,科学的聚类分析方法使用即是良好结果的前提保障。
是、聚类分析后每个类别样本数量是否均匀,如果聚类结果显示为三个类别,有一个类别样本量非常少,比如低于30,此时很可能说明聚类效果较差。针对聚类效果的判断,研究者主要是结合专业知识判断,即聚类类别是否可以进行有效命名。
『肆』 模糊聚类分析方法与聚类分析法有哪些优点
模糊聚类(FCM)是聚类分析方法中的一种,是模糊数学融入K-means,对其进行改进。一般的划分算法,如K-means,是把数据划分到不相交的类中的。即每个数据通过计算最终都将属于一个且唯一一个聚类。然而客观世界中大量存在着界限并不分明的聚类问题。模糊聚类扩展了传统聚类的思想。FCM考虑一个靠近两个类边界的对象,它离其中的一个稍微近一些,如果对每一个对象和每一个类赋予一个权值,指明该对象属于该簇的程度(被称为隶属度),通过使用隶属,使得可以把每一个数据分配给所有的聚类,不同于传统的聚类方法,模糊聚类的结果使得每个数据最终可能属于多个聚类,每个数据对每个聚类分配一个隶属度。聚类的结果可以表示为一个模糊矩阵。实际上,就是为提高聚类的分类效果的一种改进方法。
另外,聚类分析的优势是通过树立的角度对数据做智能划分,免去人工划分的痛苦。同时,一个对象由若干种不同性质的属性构成,通过聚类进行分类,为人们做决策提供参考。
『伍』 股票技术分析的优点有哪些又有什么缺陷
技术分析是指以市场行为为研究对象,以判断市场趋势并跟随趋势的周期性变化来进行股票及一切金融衍生物交易决策的方法的总和。技术分析认为市场行为包容消化一切信息、价格以趋势方式波动、历史会重演。
2、技术分析盲区与误区
应用技术分析研判走势应该注意规避技术分析的盲区与误区。所谓技术分析盲区,就是指技术指标无法预测或者预测失灵的区域,比如KDJ指标预测上升段和下跌段比较准确,但是出现高位钝化和低位钝化就是KDJ指标进入了技术分析盲区。又比如乖离率、布林线等技术指标做超跌反弹比较有效,但是,牛市末期反转的第一波下跌行情往往是惯性下跌行情,很多技术指标出现超跌反弹信号,结果都是失灵的,这也是技术分析盲区。所谓技术分析误区,就是指技术指标预测结果有时准确有时不准确的区域,比如说很多著名分析师和炒股高手总结捕捉黑马的技术指标和标准,在熊市末期和牛市初期是安全可靠的,如果在熊市初期和平衡市按图索骥就是技术分析误区。还有多数技术指标存在的滞后现象,也是技术分析的盲区与误区,投资者应该注意。
『陆』 数学建模中模糊聚类分析法的优缺点
数学建模中模糊聚类分析法优点:聚类分析模型的优点就是直观,结论形式简明。 缺点:在样本量较大时,要获得聚类结论有一定困难。
由于相似系数是根据被试的反映来建立反映被试间内在联系的指标, 而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相 似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法。
模糊划分矩阵有无穷多个,这种模糊划分矩阵的全体称为模糊划分空间。最优分类的标准是样本与聚类中心的距离平方和最小。因为一个样本是按不同的隶属度属于各类的,所以应同时考虑它与每一类的聚类中心的距离。逐步聚类法需要反复迭代计算,计算工作量很大,要在电子计算机上进行。算出最优模糊划分矩阵后,还必须求得相应的常规划分。此时可将得到的聚类中心存在计算机中,将样本重新逐个输入,去与每个聚类中心进行比较,与哪个聚类中心最接近就属于哪一类。
这种方法要预先知道分类数,如分类数不合理,就重新计算。这就不如运用基于模糊等价关系的系统聚类法,但可以得到聚类中心,即各类模式样本,而这往往正是所要求的。因此可用模糊等价关系所得结果作为初始分类,再通过反复迭代法求得更好的结果。
『柒』 聚类分析和支持向量机各自的优点和缺点是什么,如果同时应用两种方法会更好一些吗
数学建模中模糊聚类分析法优点:聚类分析模型的优点就是直观,结论形式简明。 缺点:在样本量较大时,要获得聚类结论有一定困难。
由于相似系数是根据被试的反映来建立反映被试间内在联系的指标, 而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相 似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
『捌』 聚类分析在股票板块中的应用 急需此题论文!!
请先看看下面这教程,看能否找到你要的答案,不明再问我。。
www.fjmu.e.cn
『玖』 如何判断聚类分析结构的优劣
需要搜集用户的哪些特征?聚类分析变量选择的原则是:在哪些变量组合的前提,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低,并且变量之间不能存在高度相关。常用的用户特征变量有:①
人口学变量:如年龄、性别、婚姻、教育程度、职业、收入等。通过人口学变量进行分类,了解每类人口的需求有何差异。②
用户目标:如用户为什么使用这个产品?为什么选择线上购买?了解不同使用目的的用户的各自特征,从而查看各类目标用户的需求。③
用户使用场景:用户在什么时候,什么情况下使用这个产品?了解用户在各类场景下的偏好/行为差异。④
用户行为数据:如使用频率,使用时长,客单价等。划分用户活跃等级,用户价值等级等。⑤
态度倾向量表:如消费偏好,价值观等,看不同价值观、不同生活方式的群体在消费取向或行为上的差异。需要多少样本量?没有限制,通常情况下与实际应用有关,如果非要加一个理论的限制,通常认为,样本的个数要大于聚类个数的平方。①如果需要聚类的数据量较少(lt;100),那么三种方法(层次聚类法,K-均值聚类法,两步聚类法)都可以考虑使用。优先考虑层次聚类法,因为层次聚类法产生的树状图更加直观形象,易于解释,并且,层次聚类法提供方法、距离计算方式、标准化方式的丰富程度也是其他两种方法所无法比拟的。②如果需要聚类的数据量较大(;1000),应该考虑选择快速聚类别法或者两步聚类法进行。③如果数据量在100~1000之间,理论上现在的计算条件是可能满足任何聚类方法的要求的,但是结果的展示会比较困难,例如不可能再去直接观察树状图了。应用定量方法还是定性方法?聚类分析是一种定量分析方法,但对聚类分析结果的解释还需要结合定性资料讨论。1.聚类分析的定义与用途聚类分析(Cluster Analysis)是一种探索性的数据分析方法,根据指标/变量的数据结构特征,对数据进行分类,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低。2.聚类分析的方法①层次聚类法(Hierarchical),也叫系统聚类法。既可处理分类变量,也可处理连续变量,但不能同时处理两种变量类型,不需要指定类别数。聚类结果间存在着嵌套,或者说层次的关系。②K-均值聚类法(K-Means Cluster),也叫快速聚类法。针对连续变量,也可处理有序分类变量,运算很快,但需要指定类别数。K-均值聚类法不会自动对数据进行标准化处理,需要先自己手动进行标准化分析。③两步聚类法(Two-Step Cluster):可以同时处理分类变量和连续变量,能自动识别最佳的类别数,结果比较稳定。如果只对连续变量进行聚类,描述记录之间的距离性时可以使用欧氏(Euclidean)距离,也可以使用对数似然值(Log-likelihood),如果使用前者,则该方法和传统的聚类方法并无太大区别;但是若进行聚类的还有离散变量,那么就只能使用对数似然值来表述记录间的差异性。当聚类指标为有序类别变量时,Two-Step Cluster出来的分类结果没有K-means cluster的明晰,这是因为K-means算法假定聚类指标变量为连续变量。3.聚类分析的步骤①确定研究目的:研究问题关注点有哪些、是否有先验分类数…②问卷编制:态度语句李克特项目、有序类别…③确定分析变量:问卷变量的类型,连续or分类,有序类别or无序类别、是否纳入后台数据,变量间相关性低…④聚类分析:聚类分析方法选择、数据标准化方法、聚类类别数确定…⑤结果检验:类别间差异分析、是否符合常理…⑥聚类结果解释:类别的命名、类别间的差异、结合定性资料解释…