当前位置:首页 » 行情解析 » 主成分分析与因子分析在股票
扩展阅读
股票交易软件锁屏 2025-07-15 06:59:20
股票交易数目很小 2025-07-15 05:08:18

主成分分析与因子分析在股票

发布时间: 2021-06-14 16:00:09

『壹』 因子分析法和主成分分析法的区别与联系

主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。

  • 因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,SPSSAU建议使用因子分析。

  • 主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。

SPSSAU可直接保存因子得分及综合得分,不需要手动计算。

『贰』 数据挖掘总结之主成分分析与因子分析

数据挖掘总结之主成分分析与因子分析
主成分分析与因子分析
1)概念:
主成分分析概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。
PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。
因子分析概念:探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。
PCA/EFA 分析流程:
(1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或相关系数矩阵列到principal()和fa()函数中,若输出初始结果,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值;
(2)选择因子分析模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的分析目标。选择EFA方法时,还需要选择一种估计因子模型的方法(如最大似然估计)。
(3)判断要选择的主成分/因子数目;
(4)选择主成分/因子;
(5)旋转主成分/因子;
(6)解释结果;
(7)计算主成分或因子得分。
2)、因子分析与主成分分析的区别
①原理不同
主成分分析基本原理:利用降维(线性变换)的思想,每个主成分都是原始变量的线性组合,且各个主成分之间互不相关。
因子分析基本原理:利用降维的思想,从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
②侧重点不同
主成分分析侧重“变异量”,主成分分析是原始变量的线性组合,得出来的主成分往往从业务场景的角度难以解释
因子分析更重视相关变量的“共变异量”,因子分析需要构造因子模型:EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,目的是找到在背后起作用的少量关键因子,因子分析的结果往往更容易用业务知识去加以解释
③ 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
EFA和PCA的区别在于:PCA中的主成分是原始变量的线性组合,而EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,变量中不能被因子所解释的部分称为误差,因子和误差均不能直接观察到。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。

『叁』 主成分分析与因子分析详细的异同和SPSS

这个太多了,但主体思想接近
spss软件操作是一样的

『肆』 主成分分析和因子分析有什么区别

1、原理不同:

主成分分析是利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,使得主成分比原始变量具有某些更优越的性能,从而达到简化系统结构,抓住问题实质的目的。

而因子分析更倾向于从数据出发,描述原始变量的相关关系,是由研究原始变量相关矩阵内部的依赖关系出发,把错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。

2、线性表示方向不同:

主成分分析中是把主成分表示成各变量的线性组合,而因子分析是把变量表示成各公因子的线性组合。

3、假设条件不同:

主成分分析不需要有假设条件;而因子分析需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子之间也不相关,共同因子和特殊因子之间也不相关。

4、主成分的数量不同

主成分分析的主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。而因子分析的因子个数需要分析者指定,指定的因子数量不同而结果也不同。

5、应用范围不同

在实际的应用过程中,主成分分析常被用作达到目的的中间手段,而非完全的一种分析方法,提取出来的主成分无法清晰的解释其代表的含义。而因子分析就是一种完全的分析方法,可确切的得出公共因子。

『伍』 因子分析法和主成分分析法的区别与联系是什么

因子分析与主成分分析的异同点:
都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大

主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。

『陆』 主成分分析与因子分析的区别与联系

主成分分析和因子分析,不少人初次看到觉得非常相似。特别是spss中并没有专门处理主成分分析的模块,只是在因子分析过程中使用了主成分方法,导致有些人云里雾里,将其混淆。其实二者不管从原理还是在使用上,均有较大差异。
原理不同
主成分分析(Principal components analysis,PCA)基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析(Factor Analysis,FA)基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
线性表示方向不同
主成分分析中则是把主成分表示成各变量的线性组合;
因子分析是把变量表示成各公因子的线性组合。
假设条件不同
主成分分析:不需要有假设(assumptions);
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。

『柒』 主成分分析与因子分析有什么作用

这问题牛啊,我不懂:这是我从网络里面抄的:主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。因素分析法(FactorAnalysisApproach),又称指数因素分析法,是利用统计指数体系分析现象总变动中各个因素影响程度的一种统计分析方法,包括连环替代法、差额分析法、指标分解法、定基替代法。因素分析法是现代统计学中一种重要而实用的方法,它是多元统计分析的一个分支。使用这种方法能够使研究者把一组反映事物性质、状态、特点等的变量简化为少数几个能够反映出事物内在联系的、固有的、决定事物本质特征的因素。因素分析法的最大功用,就是运用数学方法对可观测的事物在发展中所表现出的外部特征和联系进行由表及里、由此及彼、去粗取精、去伪存真的处理,从而得出客观事物普遍本质的概括。其次,使用因素分析法可以使复杂的研究课题大为简化,并保持其基本的信息量。

『捌』 主成分分析法与因子分析法的区别

一、性质不同

1、主成分分析法性质:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量。

2、因子分析法性质:研究从变量群中提取共性因子的统计技术。

二、应用不同

1、主成分分析法应用:比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。

2、因子分析法应用:

(1)消费者习惯和态度研究(U&A)

(2) 品牌形象和特性研究

(3)服务质量调查

(4) 个性测试

(5)形象调查

(6) 市场划分识别

(7)顾客、产品和行为分类



(8)主成分分析与因子分析在股票扩展阅读:

主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时,根据实际需要,尽量少取几个求和变量,以反映原始变量的信息。

这种统计方法被称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析(PCA)是试图用一组新的不相关的综合指标来代替原来的指标。

因子分析为社会研究的一种有力工具,但不能确定一项研究中有几个因子。当研究中选择的变量发生变化时,因素的数量也会发生变化。此外,对每个因素的实际含义的解释也不是绝对的。