Ⅰ 怎么用python做一个用户调查分析算法系统的开源代码
使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。
需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
Ⅱ 请大侠给推荐几个python搞的开源的项目的例子
Python的开源项目很多呀
比如Twisted,Tornado做web服务器
wxPython做GUI
Django做网站
还有做科学计算的NumPy等等
这些都是很大的,其他中小型的非常多,在GitHub上有很多可以搜索到。
另外还有基于Python的一些网站,比如很著名的豆瓣,知乎,果壳。
另外非常多网页游戏的后端都是用Python实现的。虽然这些不开源,但是基本的技术都可以在开源项目里找到原型。
Ⅲ python用什么方法或者库可以拿到全部股票代码
首先你需要知道哪个网站上有所有股票代码,然后分析这个网站股票代码的存放方式,再利用python写一个爬虫去爬取所有的股票代码
Ⅳ Github上有哪些不错的Python开源项目
https://github.com/search?l=Python&q=python&type=Repositories&utf8=%E2%9C%93
Ⅳ Python几种主流框架比较
从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。
Django: Python Web应用开发框架
Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2
模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数
据库、窗体验证工具。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py:创造矢量地图的轻量级Python框架
Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。
Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Web2py:全栈式Web框架
Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
Buildbot:基于Python的持续集成测试框架
Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。
Zerorpc:基于ZeroMQ的高性能分布式RPC框架
Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。
Bottle: 微型Python Web框架
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
Tornado:异步非阻塞IO的Python Web框架
Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。
webpy: 轻量级的Python Web框架
webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。
Scrapy:Python的爬虫框架
Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。
Ⅵ 用Python怎么做量化投资
本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?
Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?
空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件
已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配
Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包
Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化
python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。
涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档
TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library
Ⅶ Python是开源的,那我怎么看它的源代码啊
在python官网可以下载它的源码
https://www.python.org/downloads/source/
Ⅷ python量化哪个平台可以回测模拟实盘还不要钱
Python量化投资框架:回测+模拟+实盘
Python量化投资 模拟交易 平台 1. 股票量化投资框架体系 1.1 回测 实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline :事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade : 事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest :以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2 模拟 模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。 当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。 雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3 实盘 实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation : 实时获取新浪 / Leverfun 的免费股票以及 level2 十档行情 / 集思路的分级基金行情 easyhistory : 用于获取维护股票的历史数据 easyquant : 股票量化框架,支持行情获取以及交易 2. 期货量化投资框架体系 一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1 回测 回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少; 去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。 就个人理解而言,可能wind的是一个相对合适的选择。 2.2 模拟 + 实盘 vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。 能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。
Ⅸ 如果Python的源代码无法保密,那不是说所有的算法大伙都可以用
Python鼓励开源,一定要加密也是可以的,比如做win桌面软件,打包成exe就可以做封装处理的。但现在的软件大都以BS为主,客户看到的只是数据展示,也就是常说的前端。逻辑都在服务上处理,用户一样是看不到的。
Ⅹ Python 与 Matlab 哪一个对量化投资和分析更有帮助
现在分析全线转R/python,未来有可能上Julia。
别问为什么不用matlab了。R/python组合好处在于开源,数据workflow相当容易搭建起来,另外背靠学术界,有相当多的新统计工具可以试。说R速度慢根本不是问题,机器好一点就行了。超大型的数据甚至可以跑R/hadoop。
MATLAB的完全就不能比。
————————————
另外说在“工程上MATLAB有而R/python没有”我觉得是十分奇怪的。就比如,目前新工具而言比如deep learning来说。python上有Theano/pylearn2/对接caffe,MATLAB的deep learning我目前只知道一个Toolbox。旧的工具R/python上也不缺。
另外我看有答案把MATLAB能直接发送交易信号作为MATLAB卖点。我觉得贵司策略和交易是不是定位不太清晰。为了保证可靠的性能和策略管理的便利性,我想除了个人投资者没有人会选择开着MATLAB下单。