当前位置:首页 » 行情解析 » 关于股票的主成分分析
扩展阅读
怎么查找大宗交易股票 2025-07-08 16:56:19
股票代码871396 2025-07-08 15:40:01
超生电子股票代码 2025-07-08 15:21:12

关于股票的主成分分析

发布时间: 2021-06-21 18:30:46

❶ 主成分分析法具体步骤

数据标准化;
求相关系数矩阵;
一系列正交变换,使非对角线上的数置0,加到主对角上;
得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;
求各个特征根对应的特征向量;
用下式计算每个特征根的贡献率Vi;
Vi=xi/(x1+x2+........)
根据特征根及其特征向量解释主成分物理意义。

❷ 如何进行主成分分析

样品常用的分离与纯化手段

1. 化学分离法
蒸馏与分馏
分离沸点与挥发度相差较大组分的有效方法。有常压蒸馏,减压蒸馏,水蒸气蒸馏。适用于混合液体及液固的分离。
萃取
利用物质在不同溶剂中溶解度的不同和分配系数的差异,使物质达到相互分离的方法。适用于液固,液液的分离。
提取
利用不同的溶剂,从固体样品的基体中,使某种组分得到分离和浓缩。主要利用索氏提取器。如高聚物与填料,高聚物材料中微量助剂的提取与浓缩处理。缺点:①易引起热不稳定的组分变质②溶剂中的杂质也被浓缩③溶剂用量大
结晶与沉淀(溶解沉淀法)
利用样品中各组分在溶剂中的溶解度差异,使某些组分从浓溶液中生成结晶分离出来,是纯化物质的一种有效的方法。适用与高聚物的分离。
过滤与膜分离
过滤是分离液-固非均一体系常用的分离方法。适用于>1μm的颗粒。
膜分离适用于分离<1μm的胶体颗粒。分为固体高分子膜,阳离子膜,阴离子膜。
灰化,酸化,微波消解—用于无机物的分离。

2. 色谱分离法:
柱色谱法—分离有机化合物的有效手段。分为:
硅胶填充柱—适用于分离大多数弱极性,中等极性和较强极性的化合物。
氧化铝填充柱—适用于分离非极性,弱极性化合物
聚酰胺填充柱—可用于染料,表面活性剂的分离。
阳离子交换柱—分离阳离子,适用于阳离子表面活性剂。
阴离子交换柱—分离阴离子,适用于阴离子表面活性剂。
凝胶色谱法
分为:
凝胶过滤色谱(GFC)—用于分离水溶性大分子。
凝胶渗透色谱(GPC)—用于有机溶剂中可溶的高聚物分子量分布分析及分离。
哲博检测与浙大合作拥有丰富的检测分析测试经验,可提供各类物质的全成分分析,为工业生产的配方还原改性提供可靠技术支持。
联系方式见我网络账号。

❸ 主成分分析的介绍

主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

❹ 主成分分析的原理

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

❺ 主成分分析法(PCA)

3.2.2.1 技术原理

主成分分析方法(PCA)是常用的数据降维方法,应用于多变量大样本的统计分析当中,大量的统计数据能够提供丰富的信息,利于进行规律探索,但同时增加了其他非主要因素的干扰和问题分析的复杂性,增加了工作量,影响分析结果的精确程度,因此利用主成分分析的降维方法,对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。

主成分分析法的建立,假设xi1,xi2,…,xim是i个样品的m个原有变量,是均值为零、标准差为1的标准化变量,概化为p个综合指标F1,F2,…,Fp,则主成分可由原始变量线性表示:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

计算主成分模型中的各个成分载荷。通过对主成分和成分载荷的数据处理产生主成分分析结论。

3.2.2.2 方法流程

1)首先对数据进行标准化,消除不同量纲对数据的影响,标准化可采用极值法

及标准差标准化法

,其中s=

(图3.3);

图3.3 方法流程图

2)根据标准化数据求出方差矩阵;

3)求出共变量矩阵的特征根和特征变量,根据特征根,确定主成分;

4)结合专业知识和各主成分所蕴藏的信息给予恰当的解释,并充分运用其来判断样品的特性。

3.2.2.3 适用范围

主成分分析不能作为一个模型来描述,它只是通常的变量变换,主成分分析中主成分的个数和变量个数p相同,是将主成分表示为原始变量的线性组合,它是将一组具有相关关系的变量变换为一组互不相关的变量。适用于对具有相关性的多指标进行降维,寻求主要影响因素的统计问题。