当前位置:首页 » 行情解析 » biospecifics生物的股票行情
扩展阅读
世界十大股票交易机构 2025-07-01 05:50:33
股票交易补缴税款 2025-07-01 05:48:58
中国上涨幅度最大的股票 2025-07-01 05:27:25

biospecifics生物的股票行情

发布时间: 2021-07-07 05:10:03

A. 托福阅读背景知识:地球最早是怎么产生生物

托福真题再现:
版本一
1,地球早起大气成分及生物 早起甲烷与二氧化碳占主要地位,没有氧气。因为有了会光合作用的细菌,产生了大量氧气,消耗二氧化碳,提供臭氧层,为当今新生物钟提供必要环境。
版本二
有一个讲地球最早怎么产生生物的
大概有几点,首先是太阳当时不够热,地球当时气体组成像火山的,主要靠两种气体加温度,似乎一种是二氧化碳另一种是m开头的不认识
那种气体组成不适合生命也没什么氧,当时的organism有很大作用,进行光合作用产生氧气吸收二氧化碳,二氧化碳还有一部分被转移成非气态的,这样就形成了后来的大气组成
氧气可以形成臭氧层,保护生物不受紫外线辐射,这块提到了火星等其他星球就没有臭氧层或者臭氧不够多blabla不记得了,反正当时生物都去海里了因为水可以吸收紫外线辐射保护它们
威学一百解析:本文属于生命起源类型,是托福阅读资历很老的话题之一,写作角度涉及到巴斯德实验、生命起源的几种假说,以及过程的描述,同学在阅读中的难点是要克服对生僻词汇和背景知识的恐惧心理,这些都可以通过多读和精读来实现。

参考阅读:
There is no truly "standard" model of the origin of life. But most currently accepted modelsbuild in one way or another upon a number of discoveries about the origin of molecular andcellular components for life, which are listed in a rough order of postulated emergence:
1. Plausible pre-biotic conditions result in the creation of certain basic small molecules(monomers) of life, such as amino acids. This was demonstrated in the Miller-Urey experimentby Stanley L. Miller and Harold C. Urey in 1953, although it is now generally held that theirlaboratory conditions did not reflect the original Earth's atmosphere.
2. Phospholipids (of an appropriate length) can spontaneously form lipid bilayers, a basiccomponent of the cell membrane.
3. The polymerization of nucleotides into random RNA molecules might have resulted inself-replicating ribozymes (RNA world hypothesis).
4. Selection pressures for catalytic efficiency and diversity result in ribozymes, whichcatalyse peptidyl transfer (hence formation of small proteins), since oligopeptides complexwith RNA to form better catalysts. Thus the first ribosome is born, and protein synthesisbecomes more prevalent.
5. Protein out-compete ribozymes in catalytic ability, and therefore become the dominantbiopolymer. Nucleic acids are restricted to predominantly genomic use.
There are many different hypotheses regarding the path that might have been taken fromsimple organic molecules to protocells and metabolism. Many models fall into the "genes-first"category or the "metabolism-first" category, but a recent trend is the emergence of hybridmodels.
The origin of the basic biomolecules, while not settled, is less controversial than thesignificance and order of steps 2 and 3. The basic chemicals from which life was thought to haveformed are commonly held to be methane (CH4), ammonia (NH3), water (H2O), hydrogensulfide (H2S), carbon dioxide (CO2) or carbon monoxide (CO), and phosphate (PO43-).Molecular oxygen (O2) and ozone (O3) typically are considered to have been either rare orabsent.
As of 2007, no one had yet synthesized a "protocell" using basic components that wouldhave the necessary properties of life (the so-called "bottom-up-approach"). Without such aproof-of-principle, explanations have tended to be short on specifics. However, someresearchers working in this field have argued that a "top-down approach" is more feasible.One such approach involves engineering existing prokaryotic cells with progressively fewergenes, attempting to discern at which point the most minimal requirements for life werereached. The biologist John Desmond Bernal coined the term biopoesis for this process, andsuggested that there were a number of clearly defined "stages" that could be recognized inexplaining the origin of life.
Stage 1: The origin of biological monomers
Stage 2: The origin of biological polymers
Stage 3: The evolution from molecules to cell
Bernal suggested that Darwinian evolution may have commenced early, some time betweenStage 1 and 2.

B. muc1粘蛋白的MUC1的分子生物学和生物化学

MUC1又名PEM(polymorphic epithelial mucin), PUM(peanut lectin binding urinary mucins), DF3, MAM-6, CA 15-3等, 其不同的命名是由于对其分离和检测的方法等的不同而来, 其cDNA克隆是通过筛选从乳腺癌、胰腺癌等细胞系构建的cDNA表达文库而得到的。人MUC1基因定位于染色体1q21, 含有7个外显子。MUC1基因的一个重要特征是其多态性(polymorphism), 即其第2个外显子中含有许多连续重复序列(variable number of tandem repeats, VNTRs),每个VNTR含有60个碱基, 富含GC, 不同人的VNTRs数量从20~125不等,最常见的2个等位基因分别含有41和85个VNTRs, 同一个体的不同等位基因其VNTRs的数量也可能不同, 而小鼠的MUC1基因无此多态性。MUC1的这一特征表明它是一种典型的小卫星序列(minisatellite sequence)。近期研究结果推测, 小卫星重复单位数量的变化主要是由种系复合基因转变事件造成的。
不同种属的MUC1基因的差别主要表现在VNTRs的组成不同,但某些区域的组成却是保守的, 如人和小鼠(MUC1)基因的比较研究表明, 转录起始位点上游500 bp内的转录起始区, 特别是TATA盒上游区域结构是高度保守的, 这可能与MUC1在上皮性细胞中的特异性表达有关。 MUC1基因的编码产物MUC1粘蛋白是一种高分子量糖蛋白(>200 kD), 其基本特征:① 糖链占整个粘蛋白含量的50%以上, 且多以O-糖苷键与多肽骨架上的Ser/Thr相连; ② 多肽骨架中含有PTS区, 即富含Pro(P),Thr(T)和Ser(S)3种氨基酸的区域, 这3种氨基酸占整个肽链氨基酸含量的20%~55%,此区内含有许多连续重复肽链序列, 所有的O-糖基化位点均位于这些序列中。
MUC1的多肽骨架由胞外段、跨膜段和胞内段3部分组成, 跨膜段和胞内段(含72个氨基酸),在不同种间其结构是高度保守的, 表明它们在MUC1的功能发挥上可能起重要作用; 胞外段含有20~125个连续重复序列, 每个重复序列含有20个氨基酸, 即PDTRPAPGSTAPPAHGVTSA, 其中S,T,A,G,P 5种氨基酸占50%以上, P对MUC1空间结构的形成从而对其免疫原性的决定起重要作用。不同个体间连续重复序列数量的不同是由MUC1基因的多态性所决定的, 因此,胞外段长短可从400~2 500氨基酸不等, 每个连续重复序列中含有5个潜在的O-糖基化位点, 其中的4个可发生O-糖基化反应, S,T相邻是糖基化的必要条件。
糖链多以O型糖苷键与多肽骨架连接。每条糖链含有1~20个单糖,以GalNAc(15.0%), GluNAc (19.8%), Gal(44.9%),Fuc(8.9%)和SA(11.4%)最为常见,由核心区、骨架区和外周区组成。核心区是指与多肽骨架上的Ser/Thr相连的GalNAc及直接与GalNAc相连的糖链部分; 骨架区分为Ⅰ型(Galα-3GlcNAc)和Ⅱ型(Galα-4GlcNAc1-3)2种, Ⅰ型结构一般单个存在, 而Ⅱ型可多个同时存在; 外周区是指骨架区末端以α-糖苷键连接的Gal, GalNAc, Fuc, SA及硫酸基, 这些基团在决定MUC1的生化特性(如电荷等)和功能方面起重要作用。末端糖基的加入对糖链的延伸起终止作用, 同时也产生了某些糖链表位, 如血型抗原A, B和H, Lea和Leb, X, Y及Cd抗原决定簇。由于含28个氨基酸的肽链O-糖基化后长度为7 nm, 因此, MUC1胞外段的长度约为240~630 nm, 是细胞表面最先与机体免疫系统接触的膜表面分子之一。 研究表明,MUC1基因的表达主要在转录水平进行调控。这种调控作用是通过MUC1启动子上的顺式作用元件和细胞中的转录因子间的相互作用来实现的。MUC1的启动子序列约2.9 kb,其中,发挥调控作用的顺式作用元件主要位于5′开放区743 bp的序列范围内。MUC1启动子含有2个Sp1结合位点(GGGGC GGGG),分别位于-576/-568和-99/-90,另外,-101/
-89处有1个SpA结合位点(AGGGGCGGGGTT),-84/-64有1个E-box(E-MUC1)。Sp1与其结合位点的相互作用可促进MUC1基因的表达,而SpA则下调其表达。Sp1和SpA的比例可能是决定MUC1基因表达水平的一个重要因素。肿瘤细胞MUC1的高水平表达,可能与二者之间的调控失调有关。Sp1位点与E-box(E-MUC1)可能与MUC1的组织特异性表达有关。最新分析表明,MUC1启动子中含有乳腺特异性、造血细胞特异性、B细胞特异性、T细胞特异性、肝细胞特异性、肌细胞特异性顺式作用元件,这与最近报道的MUC1在除上皮组织外的多种组织和细胞中表达是一致的,MUC1启动子含有多样性的顺式作用元件,是目前已知真核启动子中比较独特的一种。对其结构及其与转录因子间相互作用的研究,对于阐明MUC1基因在肿瘤发生、发展中的作用并为肿瘤治疗提供新的线索具有重要意义。
对于MUC1基因转录后的选择性剪切而形成不同同种型的机制,目前还不清楚。由于MUC1/Y具有肿瘤特异性表达的特点,因此,这种选择性剪切可能与细胞的癌变有一定的关系。 目前的研究表明,MUC1即可诱发抗鬃瘤的CTL免疫应答(MHC限制性和非MHC限制性),同时又可抑制免疫活性细胞对肿瘤的杀伤作用,高水平的MUC1表达与肿瘤患者的预后呈负相关,提示MUC1可能参与免疫应答的调节。
Finn的研究小组首先发现在乳腺癌、卵巢癌、胰腺癌患者体内存在可杀伤肿瘤细胞的CTL,其特点为非MHC限制性。随后他们又在乳腺癌患者中发现了具有MHCⅠ限制性的识别MUC1表位的CTL。这些现象也在小鼠体内得到了进一步的验证。正是上述发现使MUC1成为一种肿瘤生物治疗的靶分子。 如上所述, MUC1在癌变时可发生量和质的改变, 出现新的抗原表位, 同时, 由于MUC1是最先与机体免疫系统接触的细胞表面分子之一,肿瘤MUC1可以非MHC限制性和MHC限制性方式活化CTLs,这些活化的CTLs可杀伤表达MUC1的肿瘤细胞。因此, MUC1是肿瘤主动特异性免疫治疗(active specific immunotherapy)理想的靶分子。
目前, 有多种基于MUC1的免疫原作为疫苗用于肿瘤治疗的研究, 有些已经进入临床实验阶段。 自MUC1发现以来,已有多家研究机构制备了多种MUC1单克隆抗体,其中56株已得到国际肿瘤生物医学协会(ISOBM)的确认(见表1),这些抗体中的大多
表1ISOBM确认的MUC1单克隆抗体
ISOBM编号 单抗名称 研制单位 研究者 同种型
ISOBM-122 Ma 552 CanAg Nilsson, O. IgG1
ISOBM-123 BC3 Austin Research Institute McKenzie I. IgM
ISOBM-124 HMPV Austin Research Institute McKenzie I. IgM
ISOBM-125 VU- 3-C6 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-126 VU-12-E1 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-127 SH1 University of Copenhagen Clausen, H. IgG3-k
ISOBM-128 DH-1 Austin Research Institute McKenzie I. IgM
ISOBM-129 MF06 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-130 VU-11-D1 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-131 VA1 Austin Research Institute McKenzie I. IgG1
ISOBM-132 MF30 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-133 BCP 8 Austin Research Institute McKenzie I. IgG2b
ISOBM-134 BW 835 Behringwerke AG Schelp, C. IgG1
ISOBM-135 SMA-1 Austin Research Institute McKenzie I. IgM
ISOBM-136 DF3 Centocor Cornillie, F. IgG1
ISOBM-137 27.1 Austin Research Institute McKenzie I. IgG1
ISOBM-138 BC2 Austin Research Institute McKenzie I. IgG1
ISOBM-139 B27.29 Biomira Inc. Craig, D. IgG1
ISOBM-140 VU- 3-D1 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-141 BCP 7 Austin Research Institute McKenzie I. IgG2a
ISOBM-142 7540MR Bayer Yeung, K. IgG1
ISOBM-143 M26 Sanofi IgM+G1-k
ISOBM-144 VU- 4-H5 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-145 3E1.2 Austin Research Institute McKenzie I. IgM
ISOBM-146 232A1 Netherlands Cancer Institute Hilkens, J. IgG1
ISOBM-147 BCP 9 Austin Research Institute McKenzie I. IgG1
ISOBM-148 115 D8 Centocor Cornillie, F. IgG2b-k
ISOBM-149 MF11 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-150 KC4 Immunotech SA Agthoven, A. Van IgG3
ISOBM-151 5F4 University of Copenhagen Clausen, H. IgM
ISOBM-152 M29 Sanofi IgG1-k
ISOBM-153 BC4E549 Hybritech Inc. Rittenhouse, H. IgG1-k
ISOBM-154 Ma 695 CanAg Nilsson, O. IgG1
ISOBM-155 Sec1 Austin Research Institute McKenzie I. IgG2b
ISOBM-156 VU-11-E2 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-157 HH 6 University of Copenhagen Clausen, H. IgG3-k
ISOBM-158 M38 Sanofi IgG1-k
ISOBM-159 E29 Dako A/S Askaa, J. IgG2a
ISOBM-160 HH14 University of Copenhagen Clausen, H. IgM
ISOBM-161 GP1.4 Immunotech SA Agthoven, A. van IgG1
ISOBM-162 214D4 Netherlands Cancer Institute Hilkens, J. IgG1
ISOBM-163 43 Austin Research Institute McKenzie I. IgM
ISOBM-164 CC2 Austin Research Institute McKenzie I. IgM
ISOBM-165 SM3 Imperial Cancer Research Fund Burchell, J. IgG1
ISOBM-166 12C10 Transgene SA Acres, B. IgG1-k
ISOBM-167 FH6 University of Copenhagen Clausen, H. IgM
ISOBM-168 BC5N154 Hybritech Inc. Rittenhouse, H. IgM
ISOBM-169 HMFG-1 Imperial Cancer Research Fund Burchell, J. IgG1
ISOBM-170 VA2 Austin Research Institute McKenzie I. IgG1
ISOBM-171 B12 Roche Diagnostic Systems Pfleiderer, P. IgG1
ISOBM-172 C595 University of Nothingham Price, M. IgG3
ISOBM-173 BCRU-G7 Norwegian Radium Hospital Rye, P. IgM
ISOBM-174 BCP10 Austin Research Institute McKenzie I. IgM
ISOBM-175 MC5 Immunotech SA Agthoven, A. van IgG1-k
ISOBM-176 7539MR Bayer Yeung, K. IgG2b
ISOBM-177 A76-A/C7 Max Delbrueck Centre f. Mol.Med. Karsten, U. IgG1+M-k
数的识别表位位于MUC1 VNTRs中的APDTRPAPG区域,如BC2识别APDTR,HMFG1识别PDTR等。由于MUC1在肿瘤细胞表面的高度异常表达,使其成为一种潜在的肿瘤靶向治疗的靶分子。目前已有多个实验室在利用MUC1单抗进行肿瘤治疗的研究。

C. 求 一切关于生物电脑 biological computer 的外文文章(english)

Advanced biological computer developed
Date: May 23, 2013
Source: American Technion Society

Microprocessor with DNA (illustration). Scientists have developed and constructed an advanced biological transcer, a computing machine capable of manipulating genetic codes, and using the output as new input for subsequent computations

Using only biomolecules (such as DNA and enzymes), scientists at the Technion-Israel Institute of Technology have developed and constructed an advanced biological transcer, a computing machine capable of manipulating genetic codes, and using the output as new input for subsequent computations. The breakthrough might someday create new possibilities in biotechnology, including indivial gene therapy and cloning.

The findings appear today (May 23, 2013) in Chemistry & Biology (Cell Press).

Interest in such biomolecular computing devices is strong, mainly because of their ability (unlike electronic computers) to interact directly with biological systems and even living organisms. No interface is required since all components of molecular computers, including hardware, software, input and output, are molecules that interact in solution along a cascade of programmable chemical events.

"Our results show a novel, synthetic designed computing machine that computes iteratively and proces biologically relevant results," says lead researcher Prof. Ehud Keinan of the Technion Schulich Faculty of Chemistry. "In addition to enhanced computation power, this DNA-based transcer offers multiple benefits, including the ability to read and transform genetic information, miniaturization to the molecular scale, and the aptitude to proce computational results that interact directly with living organisms."

The transcer could be used on genetic material to evaluate and detect specific sequences, and to alter and algorithmically process genetic code. Similar devices, says Prof. Keinan, could be applied for other computational problems.

"All biological systems, and even entire living organisms, are natural molecular computers. Every one of us is a biomolecular computer, that is, a machine in which all components are molecules "talking" to one another in a logical manner. The hardware and software are complex biological molecules that activate one another to carry out some predetermined chemical tasks. The input is a molecule that undergoes specific, programmed changes, following a specific set of rules (software) and the output of this chemical computation process is another well defined molecule."

Also contributing to the research were postdoctoral fellows Dr. Tamar Ratner and Dr. Ron Piran of the Technion's Schulich Faculty of Chemistry, and Dr. Natasha Jonoska of the Department of Mathematics at the University of South Florida.
Story Source:
The above story is based on materials provided by American Technion Society. The original article was written by Kevin Hattori.Note: Materials may be edited for content and length.

Journal Reference:
Tamar Ratner, Ron Piran, Natasha Jonoska, Ehud Keinan. Biologically Relevant Molecular Transcer with Increased Computing Power and Iterative Abilities. Chemistry & Biology, 2013; 20 (5): 726 DOI: 10.1016/j.chembiol.2013.02.016

D. 生物化学名词解释英文版

第一章
1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。
2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。
3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成
不需要从食物中获得的氨基酸。
4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。
5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。
6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。
8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。
9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。
10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱
11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。
12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。
14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。
15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。
16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。
17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。
18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。
19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。
20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。
第二章
1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。
2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。
3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。
4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。
5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。
6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。
7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.
8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。
9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。
10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。
11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。
12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。
13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。
14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。
15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。
16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。
17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。
18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。
19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。
20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。
21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。
22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。
23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。
24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。
25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。
26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。
第三章
1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是
通过降低活化能加快反应的速度。
2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。
4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。
5,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。
6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。
7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。
8,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。
9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。
10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。
11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。
12,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])
13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。
14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。
15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。
16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而
υmax不变。
17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。
18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。
19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。
20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。
21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。
22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。
23,别构调节剂(allosteric molator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。
24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。
25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。
26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。
27,别构调节酶(allosteric molator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。
第四章
1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。
2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。
3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。
4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。
5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。
6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。
7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。
8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。
9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。
10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。
11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。
12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。
13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。
14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。
第五章
1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。
2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。
3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。
4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。
5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。
6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。
7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。
8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。
9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。
10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。
11,还原糖(recing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。
12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。
13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。
14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。
15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。
16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。
17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。
第六章
1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。
2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。
3,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。
4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。
5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。
6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。
7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。
8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。
9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。
10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。
11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。
12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。
13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。
14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。
15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。
16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。
17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。
18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。
19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。
20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。
21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。
22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。
第七章
1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。
2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。
3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。
4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。
5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。
6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。
7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .
8,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .
9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。
10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。
11,转导(作用)(transction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。
12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。
13,夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。
14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。
15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。

E. 有关生物农药英文版的文献

生物农药 Biological pesticide ,biopesticide

The term biopesticide is often used for microbial biological control agents that are applied in a similar manner to chemical pesticides. Commonly these are microbial biological insecticides, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis (a control agent for grape powdery mildew). Bacillus subtilis are used to control plant pathogens. Weeds and rodents have also been controlled with microbial agents.

Biopesticides are certain types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals. For example, canola oil and baking soda have pesticidal applications and are considered biopesticides. At the end of 2001, there were approximately 195 registered biopesticide active ingredients and 780 procts. Biopesticides fall into three major classes:

Microbial pesticides consist of a microorganism (e.g., a bacterium, fungus, virus or protozoan) as the active ingredient. Microbial pesticides can control many different kinds of pests, although each separate active ingredient is relatively specific for its target pest[s]. For example, there are fungi that control certain weeds, and other fungi that kill specific insects.
The most widely used microbial pesticides are subspecies and strains of Bacillus thuringiensis, or Bt. Each strain of this bacterium proces a different mix of proteins, and specifically kills one or a few related species of insect larvae. While some Bt's control moth larvae found on plants, other Bt's are specific for larvae of flies and mosquitoes. The target insect species are determined by whether the particular Bt proces a protein that can bind to a larval gut receptor, thereby causing the insect larvae to starve.

Plant-Incorporated-Protectants (PIPs) are pesticidal substances that plants proce from genetic material that has been added to the plant. For example, scientists can take the gene for the Bt pesticidal protein, and introce the gene into the plant's own genetic material. Then the plant, instead of the Bt bacterium, manufactures the substance that destroys the pest. The protein and its genetic material, but not the plant itself, are regulated by EPA.

Biochemical pesticides are naturally occurring substances that control pests by non-toxic mechanisms. Conventional pesticides, by contrast, are generally synthetic materials that directly kill or inactivate the pest. Biochemical pesticides include substances, such as insect sex pheromones, that interfere with mating, as well as various scented plant extracts that attract insect pests to traps. Because it is sometimes difficult to determine whether a substance meets the criteria for classification as a biochemical pesticide, EPA has established a special committee to make such decisions.
What are the advantages of using biopesticides?
Biopesticides are usually inherently less toxic than conventional pesticides.

Biopesticides generally affect only the target pest and closely related organisms, in contrast to broad spectrum, conventional pesticides that may affect organisms as different as birds, insects, and mammals.

Biopesticides often are effective in very small quantities and often decompose quickly, thereby resulting in lower exposures and largely avoiding the pollution problems caused by conventional pesticides.

When used as a component of Integrated Pest Management (IPM) programs, biopesticides can greatly decrease the use of conventional pesticides, while crop yields remain high.

To use biopesticides effectively, however, users need to know a great deal about managing pests.

How does EPA encourage the development and use of biopesticides?
In 1994, the Biopesticides and Pollution Prevention Division was established in the Office of Pesticide Programs to facilitate the registration of biopesticides. This Division promotes the use of safer pesticides, including biopesticides, as components of IPM programs. The Division also coordinates the Pesticide Environmental Stewardship Program (PESP).

Since biopesticides tend to pose fewer risks than conventional pesticides, EPA generally requires much less data to register a biopesticide than to register a conventional pesticide. In fact, new biopesticides are often registered in less than a year, compared with an average of more than 3 years for conventional pesticides.

While biopesticides require less data and are registered in less time than conventional pesticides, EPA always concts rigorous reviews to ensure that pesticides will not have adverse effects on human health or the environment. For EPA to be sure that a pesticide is safe, the Agency requires that registrants submit a variety of data about the composition, toxicity, degradation, and other characteristics of the pesticide
----------------
In what is described as an important step toward controlling crop-destroying insects without chemical pesticides, scientists have successfully used genetic engineering to hasten the work of biological pest controls.

In two separate experiments, researchers say they removed toxin-procing genes from mites and scorpions and inserted them in viruses that kill insect pests. The toxins paralyzed the insects and prevented them from eating vegetation for much of the time it took the slowly working viruses to kill the pests. Ordinarily, the insects would go on eating crops until they died. But because they were immobilized, plant damage in one experiment was half what it would otherwise have been.

The United States and British experiments, which both involved the cabbage looper moth, were described in yesterday's issue of the British journal Nature.

Biological pesticides are an attractive alternative to expensive and environmentally dangerous chemical pesticides, but so far they have only secured about 1 percent of the worldwide pesticide market. The slowness of many biological controls, compared with chemical pesticides, is one reason. 'A Long Step'

The findings reported today "take the development of effective 'biopesticides' a long step further," two British experts say in a commentary in Nature. They are Michael E. Hochberg of the Center for Population at Imperial College and Jeffrey K. Waage of the International Institute of Biological Control, both in Ascot, England.

Chemical pesticides are generally lethal to a broad spectrum of insects, killing beneficial insects as well as pests. But the viruses that kill insect pests are limited to a number of species, or only one. They do not affect animals, including humans. The new technique makes it possible to proce an efficient, genetically engineered virus aimed at any single pest, said Dr. Lois K. Miller, an entomologist and geneticist at the University of Georgia, whose laboratory concted one experiment. She wrote one of the papers in Nature, along with Dr. Michael D. Tomalski.

The British experiment was concted by Dr. Robert D. Possee and a number of his colleagues at the Institute of Virology and Environmental Microbiology operated by the National Environment Research Council at Oxford, England.

Both groups said that the paralyzing toxins added to the viruses were harmless to mice, and by extension to all mammals, but Dr. Miller said that further test would be undertaken. Both groups also said that insects were unlikely to develop resistance to the genetically engineered viruses. "Those insects infected with the virus and that are exposed to the toxin die," said Dr. Miller. "So there is little chance of a resistance being passed on to the next generation."

Many insect species have developed resistance after being exposed for long periods to chemcial pesticides and also to plants into which toxic properties have been bred.

An extended period of testing and certification by university, instrial and government scientists will be necessary before the genetically altered viruses can be used commercially in the United States. "It will take three to five years to move this through the registration proceres," Dr. Miller said.

Both the American and British experiments involved the larvae of the cabbage looper moth, a pest that attacks a wide variety of plants including cabbage and cabbage relatives, including broccoli and cauliflower. To kill these larvae, both teams of scientists used the same agent, called the Autographa californica nuclear polyhedrosis virus. Paralyzing the Larvae

To paralyze the larvae while the virus was doing its work, the University of Georgia team selected a toxin proced by a tiny mite, Pyemotes tricici, that can immobilize insects 150,000 times the mite's size. The British team selected a toxin proced by the Algerian scorpion.

The American scientists found that the toxin from the mite reced the time necessary to bring the plant-eating insects under control by 40 percent. Control was defined as the death or paralysis of 50 percent of the insect population.

F. wxb是哪家公司的数字货币

英为财情的数字货币行情库已经涵盖超过2500种虚拟币,搜索bstc,无结果,说明并不存在这样一种流行的数字货币。
不过,美股市场中,有一支股票的股票代码是bstc,即biospecifics生物
(bstc)

G. BSTC是数字货币吗哪家公司发行的

BSTC是美国百仕通集团发行的虚拟数字货币,给有一个黑钻币我是百仕通集团发行的,BSBC我是百仕通集团的,百事通集团是07年在纳斯达克上市公司,全球最大的资金管理公司

H. 求翻译,生物大神来吧

最近的兴趣复苏代谢手中-
tations转化细胞系和其他迅速增殖
哺乳动物细胞导致更深
对分子司机后面的理解
矛盾的通量重新布线。然而,进一步推动
一般在糖酵解或glutaminolytic“锁定”
表型,而是可以改变他们的新陈代谢
向增加OXPHOS或替代的使用
基质养分消耗,环境-
心理干扰,或基因

I. 谁知道生物工程和材料方面的切合点有那些

知道一些,是我所在的高校近期有类似的研发项目。

1, Biomaterial,这个方向是结合了材料和生物两个学科的领域,细化说,这是一个结合了物理化学,生物和制药四个方向的学科。比如仿生物器官的材料,用化学材料和生物材料合成制作假牙,或者是生物制剂药品开发过程中使用化学物质导致易于和机体发生反应,还有就是生物分子表面反应的相互关系使用化学的方法和角度来进行诠释。

2,Biopharmaceutics,生物制药学也用到了大量的材料科学的内容。这个专业方向明确提出会使用material science,结合毒理学,制药学等生物工程相关的学科。

大概列举几个现阶段的研究方向(翻译得不太好,见谅啦):
a,Specific targeting to the entero-hepatobiliary system based on ADME and clinical principles 基于ADME(指吸收,分散,代谢,排泄四个过程)和临床理论的肠,胆系统特异性靶向研究

b,Novel oral formulations of poorly soluble compounds using principles from dietary lipid processing 基于食用行脂肪(吸收)过程的不易溶化合物研究(这里的oral formulation我也不知是特指什么)

c,Novel approaches for drug targeting of anti-cancer drugs based on ADME and clinical principles 基于ADME(指吸收,分散,代谢,排泄四个过程)和临床理论的抗癌药物靶点研究(这个和楼主询问的应该是相关性很强的。)

d,Develop new drug delivery principles where it exists a clinical need (such as sublingual delivery of fentanyl to cancer patients with incident (breakthrough) pain) 基于临床需要的新药研究
(这个也是和楼主询问的应该是相关性很强的。)

J. 英语作文 生物技术的优点

The main features of the new biotechnology

Main features:
(A) to break a few thousand years can not be genetically distant hybridization of the law, breaking the barrier between species. Any one can introce a gene to give it new life forms and genetic characteristics, for example, a bacterial toxin genes into cotton, the pest-resistant cotton to obtain the performance; Another example would be a certain kind of virus genes into tobacco or vegetables, leaving the latter to obtain new varieties of plant virus resistance; and if the growth hormone gene into pigs may get fish or fish or fast-growing new breed pigs and so on. This is the transgenic plants or transgenic animals, which is breeding history of a great revolution.

(B) provides a direct means or artificial gene or protein synthesis, or the use of simple microbes to mass proction of useful proteins, important for human and animal disease prevention, treatment and diagnosis. You can even change the nature of protein to make it more in line with people's needs, which is protein engineering. In the past, a very small amount of protein in the body, difficult to extract, can now be mass proced using E. coli fermentation, resulting in the formation of new biological treatment, and pharmaceutical instry.

(C) provide a means of gene therapy in the treatment and prevention on a genetic level, for the treatment of difficult to treat genetic diseases, cancer and so on.

Emerging biotechnology instry benefits

New biotechnology for developing countries provides a useful means to develop their national economy, the advantages are: 1, low investment, high value, short, quick; 2, the use of natural renewable energy sources, bacteria can be infinitely blooms; 3, the new bio-genetically engineered varieties of bacteria are relative genetic stability, can be continuous, long-term use it to create wealth; 4, generally no environmental pollution.

Trend of development of biotechnology

Over the last decade the international development of biotechnology, summarized as the following significant trends and characteristics:

(A) rapid genetic manipulation techniques, continuous improvement, especially in gene transfer technology, gene amplification, gene cloning, gene modification technology, and through commercial channels, selling a full set of reagents specific technology, to promote. Currently, gene technology has been extended to the grassroots level, such as clinicians using gene amplification technology diagnostic difficult cases.

(B) the biological treatment by leaps and bounds. New drugs and vaccines have been about 20 new procts on the market, has generated huge economic and social benefits, the pharmaceutical instry will face this century update.

(C) genetically modified plants and animals have a major breakthrough. Insect-resistant, anti-virus vegetables and other crops, insect-resistant cotton, has entered the practical stage, the beginning of this century, we can promote socially acceptable insect-resistant, anti-virus crops. Cultivate salinity, drought-resistant crops, in this century will be realized. Introction of new bio-technological innovation throughout the agriculture, is estimated to be fully operational by 2030.

(D) of the human genome as a major international collaboration between scientific issues, the development of new drugs offer good prospects.

(E) expectations for gene therapy to make significant progress. Since 1990, treatment of one case of congenital immune deficiency has been only four years the object of gene therapy has been rapidly extended to the treatment of cancer, AIDS, hepatitis B, cardiovascular and other serious diseases. Estimated beginning of this century, cancer, AIDS and other serious diseases prevention and control is expected to achieve a breakthrough.

Emerging biotechnology applications in agriculture

Biotechnology is important for China's high agricultural techniques, including the development of high yielding, high quality, stress-resistant new varieties of plants and animals, nitrogen fixation, Livestock and other major diseases prevention and control. Currently, the emerging biotechnology applications in agriculture mainly in the areas of genetically modified plants and animals.

Transgenic plants such as tobacco mosaic virus resistance in tobacco, cotton bollworm resistance, insect-resistant vegetables, anti-rotten tomatoes.

Transgenic animals such as fast-growing fish, milk secretion of a large number of effective drugs in sheep or other animals.

Genetically engineered micro-organisms such as agriculture, transformation of symbiotic nitrogen fixation joint fixation or engineering bacteria to enhance nitrogen fixation, with toxic gene engineered bacteria used as pesticides.

Veterinary vaccines using genetically engineered recombinant D NA technologies and the development of veterinary vaccines for serious infectious disease prevention.

Engineering for the rapid propagation of bovine embryos cattle breeding, embryo division, variant development.

Emerging biotechnology applications in medicine

Biological treatment is the use of D NA recombinant technology or other new biotechnology disease prevention and treatment, based on current progress, the biological treatment should include broad restructuring and reorganization of D NA protein drugs drugs into two categories:

1, the recombinant protein drugs: treatment, including cytokines, anti-cytokines treatment, treatment of immune protection, guidance toxins, drugs based on gene transcription factors, monoclonal antibody therapeutic agents, vaccines, treatments and so on. 2, recombinant D NA drugs: drugs, including oligonucleotides, gene therapy and gene vaccines.

Biotechnology can also be used for process, energy and other instrial applications, including starch, amino acids, enzymes, antibiotics, polymers, methanol proction, control of environmental pollution, oil drilling and mining and so on. However, the current focus on medicine and agriculture, today's biotechnology applications in medicine accounted for more than 60% of biotechnology, has formed a new instrial biotechnology procts mainly in medicine.

China's 863 major biotechnology objectives and progress

Main strategic objectives are:

Developed hybrid rice yield than the existing 15% of hybrid rice, and large scale; developed with significant market value of the fast-growing fish; 10 to 15 species of high-tech biotech drugs and vaccines to market, the basic formation of our biological field high-tech instry, annual turnover of 1 billion yuan; strive to put 50% of the results of the application; the main aspects of biotechnology to the current international standards, and in hybrid rice, transgenic plants, hepatitis and cancer prevention and control of new drugs and vaccines in the formation of the country's characteristics, including some of the items in the international leading level; build a number of bio-tech research and development base; train a group of cross-century high-tech talent.

To this end, the establishment of three themes: First, high-quality, anti-animal and plant new varieties; second new drugs, vaccines and gene therapy; third protein engineering. Consists of five major projects and 12 thematic projects.

Achievements sum up, have the following main aspects:

Two-line hybrid rice research has made significant progress; genetically modified plants, animals, breakthrough progress; have been homozygous for insect-resistant cotton, trypsin inhibitor gene transfer of cotton also continue to differentiate in vitro germination, disease tobacco has been widely promoted has received a number of fast-growing transgenic common carp; recombinant microorganisms have been used for agricultural proction, increase yield, saving more than 2 kg nitrogen per acre; recombinant hepatitis B vaccine proction technology reached the international advanced level, there are other cholera three kinds of new vaccines into the pilot, several countries linked technology transfer issues; genetically engineered peptide drugs to achieve instrialization, recombinant interferon and interleukin-2 of the annual output of about 50 million yuan; hemophilia B gene therapy leading position in the international arena; basic research in biotechnology innovation results; our basic grasp of today's biological scientists, main areas of cutting-edge technology, driven by 863 and radiation, biological technology in China have a greater degree of popularity, China's large Hospital began to use P CR technology for disease diagnosis.

Challenges and Opportunities

Looking ahead, China's population growth and land shortage is a long-standing conflicts, and international rapid development of modern biotechnology is expected to bring the Green Revolution, is the hope to resolve this contradiction. China's development of biotechnology has many advantages, so we should: focus on clinical efficacy as soon as possible develop a number of clear, non-infringement of foreign patent procts; development group is currently abroad, as soon as possible in the clinical stage Ⅰ, Ⅱ trials, drug proction has not yet been license, with great prospect of the drug, the use of our clinical trials of favorable conditions, it is possible in the case of infringement of foreign patents, required to complete our clinical stage Ⅰ, Ⅱ trial, treatment of new indications, first to the market ; considering the development of a number of foreign patent expire early this century and has great application value in our pro