A. 如何用excel做线性回归分析
1、单击开始---->所有程序---->Microsoft Office,选择Microsoft Excel 2010选项。
B. 这是用股票收盘价形成的时间序列数据线性回归模型,求大神帮忙进行回归诊断!
还诊断啥 你看看那R-squared,这模型能用吗 然后回归系数也没有通过显著性检验
C. 股票中画线工具的线性回归带怎么用
线性回归分析是一种可以减少市场价格走势“杂音”的方法之一。最简单的解释就是在价格线图上画一条直线,使得这条直线于每个价格距离的平方的加总是最小的。这种分析方式比均线灵敏,也可能会有更多的交易机会。而在回归线的基础上,这篇文章要探讨2个新的参数:回归线斜率以及R平方。利用这两个参数的结合,我们来试着抓出价格的趋势。
线性回归画法:
将鼠标从一个相对低点拖曳到一个相对高点即得到百分比线。
用法:
线性回归、线形回归带及线形回归通道:线性回归、线性回归带及线性回归通道是根据数学上线性回归的原理来确定一定时间内的价格走势。线性回归将一定时间内的股价走势线性回归,然后来确定这一段时间内的总体走势;线性回归带是根据这一段时间内的最高、最低价画出线性回归的平行通道线;回归通道是线性
D. 如何使用excel做一元线性回归分析
首先要准备好两组数据做为x和y,这组数据在可以简单感觉一下是否具有线性关系
将准备好的数据放入excel表格里面
EXCEL需要我们自己启用数据分析,点击文件,选择选项,点击左侧的加载项,加载分析工具
加载工具完成以后,点击数据中的“工具分析”,选择“回归”,点击确定
点击Y值输入区域后面的单元格选择工具,选择Y值单元格,比如小编这里的A2:A20,X值同理操作,这里选择B2:B20
勾选下方的线性拟合图,我们可以看一下拟合的效果
excel会在新的工作表里面输出回归分析的相关结果,比如相关系数R^2,标准误差,在X-variable和Intercept两项的值可以写出一元回归方程
在右侧就是我们的线性拟合图,观察拟合效果还不错
我们可以对图做一些修改,方便放到word文档里面,选中该图
在图表工具里面的图表布局中选择“布局3”,图标样式选择第一个黑白色
在新的图标样式里面多了很多网格线,实际我们并不是太需要,选中右击删除
是整个图标简洁一些
E. 线性回归 怎么算
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.
数据组说明线性回归
我们以一简单数据组来说明什么是线性回归.假设有一组数据型态为 y=y(x),其中 x={0,1,2,3,4,5},y={0,20,60,68,77,110} 如果我们要以一个最简单的方程式来近似这组数据,则非一阶的线性方程式莫属.先将这组数据绘图如下 图中的斜线是我们随意假设一阶线性方程式 y=20x,用以代表这些数据的一个方程式.以下将上述绘图的 MATLAB 指令列出,并计算这个线性方程式的 y 值与原数据 y 值间误差平方的总合.>> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> y1=20*x; % 一阶线性方程式的 y1 值 >> sum_sq = sum((y-y1).^2); % 误差平方总合为 573 >> axis([-1,6,-20,120]) >> plot(x,y1,x,y,'o'),title('Linear estimate'),grid 如此任意的假设一个线性方程式并无根据,如果换成其它人来设定就可能采用不同的线性方程式;所以我们 须要有比较精确方式决定理想的线性方程式.我们可以要求误差平方的总合为最小,做为决定理想的线性方 程式的准则,这样的方法就称为最小平方误差(least squares error)或是线性回归.MATLAB的polyfit函数提供了 从一阶到高阶多项式的回归法,其语法为polyfit(x,y,n),其中x,y为输入数据组n为多项式的阶数,n=1就是一阶 的线性回归法.polyfit函数所建立的多项式可以写成 从polyfit函数得到的输出值就是上述的各项系数,以一阶线性回归为例n=1,所以只有 二个输出值.如果指令为coef=polyfit(x,y,n),则coef(1)= ,coef(2)=,...,coef(n+1)= .注意上式对n 阶的多 项式会有 n+1 项的系数.我们来看以下的线性回归的示范:>> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> coef=polyfit(x,y,1); % coef 代表线性回归的二个输出值 >> a0=coef(1); a1=coef(2); >> ybest=a0*x+a1; % 由线性回归产生的一阶方程式 >> sum_sq=sum(y-ybest).^2); % 误差平方总合为 356.82 >> axis([-1,6,-20,120]) >> plot(x,ybest,x,y,'o'),title('Linear regression estimate'),grid
[编辑本段]线性回归拟合方程
最小二乘法
一般来说,线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线,其经验拟合方程如下:其相关系数(即通常说的拟合的好坏)可以用以下公式来计算:理解回归分析的结果
虽然不同的统计软件可能会用不同的格式给出回归的结果,但是它们的基本内容是一致的.我们以STATA的输出为例来说明如何理解回归分析的结果.在这个例子中,我们测试读者的性别(gender),年龄(age),知识程度(know)与文档的次序(noofdoc)对他们所觉得的文档质量(relevance)的影响.输出:Source | SS df MS Number of obs = 242 -------------+------------------------------------------ F ( 4,237) = 2.76 Model | 14.0069855 4 3.50174637 Prob > F = 0.0283 Resial | 300.279172 237 1.26700072 R-squared = 0.0446 ------------- +------------------------------------------- Adj R-squared = 0.0284 Total | 314.286157 241 1.30409194 Root MSE = 1.1256 ------------------------------------------------------------------------------------------------ relevance | Coef.Std.Err.t P>|t| Beta ---------------+-------------------------------------------------------------------------------- gender | -.2111061 .1627241 -1.30 0.196 -.0825009 age | -.1020986 .0486324 -2.10 0.037 -.1341841 know | .0022537 .0535243 0.04 0.966 .0026877 noofdoc | -.3291053 .1382645 -2.38 0.018 -.1513428 _cons | 7.334757 1.072246 6.84 0.000 .-------------------------------------------------------------------------------------------
输出
这个输出包括一下及部分.左上角给出方差分析表,右上角是模型拟合综合参数.下方的表给出了具体变量的回归系数.方差分析表对大部分的行为研究者来讲不是很重要,我们不做讨论.在拟合综合参数中,R-squared 表示因变量中多大的一部分信息可以被自变量解释.在这里是4.46%,相当小.
回归系数
一般地,我们要求这个值大于5%.对大部分的行为研究者来讲,最重要的是回归系数.我们看到,年龄增加1个单位,文档的质量就下降 -.1020986个单位,表明年长的人对文档质量的评价会更低.这个变量相应的t值是 -2.10,绝对值大于2,p值也
F. 请问什么是线性回归线
线性回归是用来从过去价值中预测未来价值的统计工具。就股票价格而言,它通常用来决定何时价格过份上涨或下跌(行情极端)
线性回归趋势线使用最小平方法做出的一条尽量贴近价格线的直线,使价格线与预测的趋势线差异小。
线性回归线方式:Y=a+bx
其中:a=(∑y-b∑x)/n
b=n∑(xy)-(∑x)(∑y)/n∑x?2-(∑x)?2
x是目前时间段
y是时间段总数原理:如果不得不去猜测某一股票明天的价格,较合逻辑的猜测就应该是“尽量贴近今天价格”如果股票有上涨的趋势,一个好的猜测就是尽量贴近今天的价格加上一个上调值。线性回归分析正是用统计数字来验证了这些逻辑假设。
线性回归线是用最小平方匹配法求出的两点间的趋势线。这条趋势线表示的是中间价。如果把此线认作是平衡价的话,任何偏移此线的情况都暗示着超买或超卖。
在中间线的上方和下方都建立了线性回归渠道线。渠道线和线性回归线的间距是收盘价与线性回归线之间的最大距离。回归线包含了价格移动。渠道下线是支撑位,渠道上线是阻挡位。价格可能会延伸到渠道外一段很短的时间,但如果价格持续在渠道外很长一段时间的话,表明趋势很快就会逆转了。
线性回归线是平衡位置,线性回归渠道线表示价格可能会偏离线性回归线的范围。
G. 线性回归的基本假设
1、随机误差项是一个期望值或平均值为0的随机变量;
2、对于解释变量的所有观测值,随机误差项有相同的方差;
3、随机误差项彼此不相关;
4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;
5、解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;
6、随机误差项服从正态分布。
(7)股票价格线性回归分析扩展阅读:
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
线性回归有很多实际用途。分为以下两大类:
1 如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
2 给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
H. 线性回归计算中的r怎么计算
1、r=∑(Xi-X)(Yi-Y)/根号[∑(Xi-X)²×∑(Yi-Y)²]
上式中”∑”表示从i=1到i=n求和;X,Y分别表示Xi,Yi的平均数。
2、简单线性回归用于计算两个连续型变量(如X,Y)之间的线性关系,
具体地说就是计算下面公式中的α和βα和β。
Y=α+βX+εY=α+βX+ε
其中εε称为残差,服从从N(0,σ2)N(0,σ2)的正态分布,自由度为(n-1) - (2-1) = n-2 为了找到这条直线的位置,我们使用最小二乘法(least squares approach)。
最小二乘法确保所有点处的残差的平方和最小时计算α和βα和β,即下面示意图中∑4i=1ε2i=ε21+ε22+ε23+ε24∑i=14εi2=ε12+ε22+ε32+ε42有最小值。
(8)股票价格线性回归分析扩展阅读:
线性回归有很多实际用途。分为以下两大类:
1、如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
2、趋势线
一条趋势线代表着时间序列数据的长期走势。它告诉我们一组特定数据(如GDP、石油价格和股票价格)是否在一段时期内增长或下降。虽然我们可以用肉眼观察数据点在坐标系的位置大体画出趋势线,更恰当的方法是利用线性回归计算出趋势线的位置和斜率。
I. 线性回归分析和指数回归分析有什么区别,如何使用
您好
线性回归分析和指数回归分析其实理论基础是一样的,基本没有区别,另外,今年的股票基本会出现大幅度的下跌,这已经是不可避免的了,经济数据您也可以看到,股票市场的股票业绩下滑也是不争的事实,另外大股东的股票减持和注册制度加快实施,也会严重影响股票市场,另外新股加速扩容和人民币加速贬值,都在很大的方面压制股票,这些还只是股票市场困难的一个部分,所以作为理财师我建议您,保持观望,远离股市,真诚回答,希望采纳!
J. 怎么正确计算股票Beta值的线性回归,计算感觉有问题
这个你回归出来的方程是 Y=-0.174+0.59X 你的beta是0.59 置信度很小,说明beta显著不为0
但你的截距 -0.174的置信度是0.486,可以认为是0了。所以回归的没错,只是你对这个表还不熟悉。
你说的beta为0.762是先把数据标准化再做回归,标准化的数据就没有截距(或者截距为0),所以第一行标准系数是空的。