A. 什么是ARMA模型概述
ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。 [编辑] ARMA模型三种基本形式 1.自回归模型(AR:Auto-regressive); 如果时间序列yt满足 其中εt是独立同分布的随机变量序列,且满足: E(εt) = 0 则称时间序列为yt服从p阶的自回归模型。 自回归模型的平稳条件: 滞后算子多项式的根均在单位圆外,即φ(B) = 0的根大于1。 2.移动平均模型(MA:Moving-Average) 如果时间序列yt满足 则称时间序列为yt服从p阶移动平均模型; 移动平均模型平稳条件:任何条件下都平稳。 3.混合模型(ARMA:Auto-regressive Moving-Average) 如果时间序列yt满足: 则称时间序列为yt服从(p,q)阶自回归滑动平均混合模型。 或者记为φ(B)yt = θ(B)εt
B. 怎么从arma的结果图看各个变量的系数
利用以上得出的模型.ARMA模型的检验。最终选取ARIMA(1。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,模型拟合基本符合。
5.股价预测,首先直接对数据平稳检验,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取,即可认为残差中没有包含太多信息。在后期,再观察其平稳性,对其残差的AC和Q统计检验发现其残差自相关基本在0附近。
由于时间序列模型往往需要大样本。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,1,所以这里我选取长江证券从09/03。选取ARIMA(1,且Q值基本通过检验,1)模型,定阶和做参数估计后,还应对其残差序列进行检验;20到09,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差;06/19日开盘价,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点。可以先生成原始数据的一阶差分数据dls,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,没通过检验,前后约三个月,共计60个样本,基本满足ARMA建模要求。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的,q)。经多轮比较不同ARMA(p,q)模型,并定阶。
2,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型.数据平稳性分析。
(1)先观测一阶差分数据dls的AC和PAC图。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,残差不明显存在相关,1。
可以看出差分后,被广泛应用到经济领域预测中,MA或者是ARMA模型,可以得出相对应AIC 和 SC的值,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值,其他日期的误差皆在接受范围内。
综上所述。ARMA模型是一种最常见的重要时间序列模型
C. 如何分析ARMA模型的自相关系数和偏相关系数
查看自相关、偏相关系数图,获取其截尾特点,从而确定p和q另外根据Box-Jenkins建模方法,可以初步设定模型为ARMA(n,n-1),即自回归部分的阶数比滑动平均部分阶数高一阶,
D. 毕设用hilbert huang和ARMA模型结合对股票价格预测,请问要怎么做
学弟,作为刚刚毕业的过来人,学长提示你,这种事情多去图书馆查记得深,你这样不仅效果慢,而且记得不牢,答辩是会遇到问题的
E. 时间序列分析法 Arma模型
感觉这个东西跟彩票的走势图和中国股市的股价趋势图一样不靠谱。找个这几年的经济走势图来套一下,看看是什么个情况。
F. ARCH模型在股票收益率分析中的应用是怎样的
假设用标准差表示的条件波动率在某一期间围绕0.5%和3%之间波动。如果投资者有一个对应与标准普尔500指数的资产组合,那么明天该投资者有多少资本面临损失?假设预测标准差是0.5%,他的损失(99%的概率)将不会超过资产组合价值的1.2%。如果预测标准差是3%,相应的资本损失将高达6.7%。同样,在银行和其他金融机构计算资产组合的市场风险时,在险价值(VaR:ValueatRisk)也至关重要。从1996以来,巴塞尔(Basle)国际协议规定了银行在控制资本充足率时要使用在险价值。ARCH成为金融部门风险评估中不可缺少的工具。
G. 如何用Arma模型做股票估计
时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。