1. 什么是波动率指数
1987的全球股灾后,为稳定股市与保护投资者,纽约证券交易所(NYSE)于1990年引进了断路器机制(Circuit-breakers),当股价发生异常变动时,暂时停止交易,试图降低市场的波动性来恢复投资者的信心。但断路器机制引进不久,对于如何衡量市场波动性市场产生了许多新的认识,渐渐产生了动态显示市场波动性的需求。因此,在NYSE采用断路器来解决市场过度波动问题不久,芝加哥期权交易所从1993年开始编制市场波动率指数(Market Volatility Index,VIX),以衡量市场的波动率。
CBOE 在1973年4月开始股票期权交易后,就一直有通过期权价格来构造波动率指数的设想,以反映市场对于的未来波动程度的预期。其间有学者陆续提出各种计算方法,Whaley(1993)[1] 提出了编制市场波动率指数作为衡量未来股票市场价格波动程度的方法。同年,CBOE开始编制VIX 指数,选择S&P100 指数期权的隐含波动率为编制基础,同时计算买权与卖权的隐含波动率,以考虑交易者使用买权或卖权的偏好。
VIX表达了期权投资者对未来股票市场波动性的预期,当指数越高时,显示投资者预期未来股价指数的波动性越剧烈;当VIX指数越低时,代表投资者认为未来的股价波动将趋于缓和。由于该指数可反应投资者对未来股价波动的预期,并且可以观察期权参与者的心理表现,也被称为“投资者情绪指标”(The investor fear gauge )。经过十多年的发展和完善,VIX指数逐渐得到市场认同,CBOE于2001年推出以NASDAQ 100指数为标的的波动性指标 (NASDAQ Volatility Index ,VXN); CBOE2003年以S&P500指数为标的计算VIX指数,使指数更贴近市场实际。2004年推出了第一个波动性期货(Volatility Index Futures)VIX Futures, 2004年推出第二个将波动性商品化的期货,即方差期货 (Variance Futures),标的为三个月期的S&P500指数的现实方差(Realized Variance)。2006年,VIX指数的期权开始在芝加哥期权交易所开始交易
计算波动率指数(VIX)需要的核心数据是隐含波动率,隐含波动率由期权市场上最新的交易价格算出,可以反映市场投资者对于未来行情的预期。其概念类似于债券的到期收益率(Yield To Maturity):随着市场价格变动,利用适当的利率将债券的本金和票息贴现,当债券现值等于市场价格时的贴现率即为债券的到期收益率,也就是债券的隐含报酬率。在计算过程中利用债券评价模型,通过使用市场价格可反推出到期收益率,这一收益率即为隐含的到期收益率。
2. eviews怎么预测未来四天某只股票的价格那
你要先建立模型,然后才谈预测的事情
另外,如果你是为了炒股,那还是省省吧,预测不准确的
3. ARIMA能预测股票吗
不能,股票的价格是众多大小投资者共同作用的结果。
4. arima模型python 怎么看平稳性
时间序列分析(一) 如何判断序列是否平稳
序列平稳不平稳,一般采用两种方法:
第一种:看图法
图是指时序图,例如(eviews画滴):
分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。
看看上面这个图,很明显的增长趋势,不平稳。
第二种:自相关系数和偏相关系数
还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。
分析:判断平稳与否的话,用自相关图和偏相关图就可以了。
平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0 。
自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。
下面是通过自相关的其他功能
如果自相关是拖尾,偏相关截尾,则用 AR 算法
如果自相关截尾,偏相关拖尾,则用 MA 算法
如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。
不平稳,怎么办?
答案是差分
还是上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分,上图。
从图上看,一阶差分的效果不错,看着是平稳的。
5. ARIMA时间序列建模过程——原理及python实现
原文链接:http://tecdat.cn/?p=20742
时间序列被定义为一系列按时间顺序索引的数据点。时间顺序可以是每天,每月或每年。
以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。
最受欢迎的见解
1.在python中使用lstm和pytorch进行时间序列预测
2.python中利用长短期记忆模型lstm进行时间序列预测分析
3.使用r语言进行时间序列(arima,指数平滑)分析
4.r语言多元copula-garch-模型时间序列预测
5.r语言copulas和金融时间序列案例
6.使用r语言随机波动模型sv处理时间序列中的随机波动
7.r语言时间序列tar阈值自回归模型
8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类
9.python3用arima模型进行时间序列预测
6. spss DW偏小 除了用ARIMA模型 还能用什么呢因为样本是4年内的多支股票 而且有的股票只有1~2年的数据
1.5偏小了
每个人的情况都不一样的啊
我经常帮别人做类似的数据分析的
7. 怎样用spss做股票新成交量
主要根据分析目的来吧,比如建立arima,然后预测之类的
8. 怎么从arma的结果图看各个变量的系数
利用以上得出的模型.ARMA模型的检验。最终选取ARIMA(1。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,模型拟合基本符合。
5.股价预测,首先直接对数据平稳检验,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取,即可认为残差中没有包含太多信息。在后期,再观察其平稳性,对其残差的AC和Q统计检验发现其残差自相关基本在0附近。
由于时间序列模型往往需要大样本。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,1,所以这里我选取长江证券从09/03。选取ARIMA(1,且Q值基本通过检验,1)模型,定阶和做参数估计后,还应对其残差序列进行检验;20到09,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差;06/19日开盘价,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点。可以先生成原始数据的一阶差分数据dls,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,没通过检验,前后约三个月,共计60个样本,基本满足ARMA建模要求。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的,q)。经多轮比较不同ARMA(p,q)模型,并定阶。
2,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型.数据平稳性分析。
(1)先观测一阶差分数据dls的AC和PAC图。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,残差不明显存在相关,1。
可以看出差分后,被广泛应用到经济领域预测中,MA或者是ARMA模型,可以得出相对应AIC 和 SC的值,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值,其他日期的误差皆在接受范围内。
综上所述。ARMA模型是一种最常见的重要时间序列模型
9. 如何用Arma模型做股票估计
时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。
10. eviews中运用某个股票的价格拟合ARIMA模型,如何处理其中的缺失值
eviews拟合ARIMA模型问题均可+名中我QQ来给以解决。