⑴ 如何用Arma模型做股票估计
时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值。ARMA模型是一种最常见的重要时间序列模型,被广泛应用到经济领域预测中。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取。
由于时间序列模型往往需要大样本,所以这里我选取长江证券从09/03/20到09/06/19日开盘价,前后约三个月,共计60个样本,基本满足ARMA建模要求。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,再观察其平稳性。
2.数据平稳性分析。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,首先直接对数据平稳检验,没通过检验,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳。
可以看出差分后,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型,并定阶。可以先生成原始数据的一阶差分数据dls,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,MA或者是ARMA模型。
(1)先观测一阶差分数据dls的AC和PAC图。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p,q)。经多轮比较不同ARMA(p,q)模型,可以得出相对应AIC 和 SC的值。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的。最终选取ARIMA(1,1,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的检验。选取ARIMA(1,1,1)模型,定阶和做参数估计后,还应对其残差序列进行检验,对其残差的AC和Q统计检验发现其残差自相关基本在0附近,且Q值基本通过检验,残差不明显存在相关,即可认为残差中没有包含太多信息,模型拟合基本符合。
5.股价预测。利用以上得出的模型,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点,其他日期的误差皆在接受范围内。
综上所述,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨。在后期,将继续在这方面做出自己的摸索。
⑵ 怎么用eviews做一个时间序列的arma模型分析
数据的录入与保存:
创建Workfile:点击File/New/Workfile,输入起止日期。
建立object输入数据:点击object/new
object,定义数据文件名ex4_2并输入数据。
将Workfile保存:点击File/save,而store只存储对象object。
模型定阶:点击Quick/Estimate
equation输入类似Y
AR(1)
AR(2)
AR(3)形式的各种不同模型,利用AIC准则或F检验选择最合适的模
型。
先拟合AR(3)模型:得知,参数不显著,且AIC=2.8352,SC=2.9169,SSE=86.95。
再拟合AR(2)模型:AIC=2.8329,SC=2.8870,SSE=89.64
再拟合AR(1)模型:SSE=91.32,AIC=2.8194,SC=2.8463。
F检验:F=2.77<3.92,说明AR(3)与AR(2)模型没有显著性差异,故可判定适应模型为AR(2)
。
模型预测:用AR(2)模型作预测
⑶ 时间序列分析运用ARMA(q,p)模型,如何确定q、p的取值
查看自相关、偏相关系数图,获取其截尾特点,从而确定p和q
另外根据Box-Jenkins建模方法,可以初步设定模型为ARMA(n,n-1),即自回归部分的阶数比滑动平均部分阶数高一阶,
⑷ ARIMA时间序列建模过程——原理及python实现
原文链接:http://tecdat.cn/?p=20742
时间序列被定义为一系列按时间顺序索引的数据点。时间顺序可以是每天,每月或每年。
以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。
最受欢迎的见解
1.在python中使用lstm和pytorch进行时间序列预测
2.python中利用长短期记忆模型lstm进行时间序列预测分析
3.使用r语言进行时间序列(arima,指数平滑)分析
4.r语言多元copula-garch-模型时间序列预测
5.r语言copulas和金融时间序列案例
6.使用r语言随机波动模型sv处理时间序列中的随机波动
7.r语言时间序列tar阈值自回归模型
8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类
9.python3用arima模型进行时间序列预测
⑸ 怎么从arma的结果图看各个变量的系数
利用以上得出的模型.ARMA模型的检验。最终选取ARIMA(1。给出ARMA模型的模式和实现方法,然后结合具体股票数据揭示股票变换的规律性,模型拟合基本符合。
5.股价预测,首先直接对数据平稳检验,并运用ARMA模型对股票价格进行预测。
选取长江证券股票具体数据进行实证分析
1.数据选取,即可认为残差中没有包含太多信息。在后期,再观察其平稳性,对其残差的AC和Q统计检验发现其残差自相关基本在0附近。
由于时间序列模型往往需要大样本。经检验可以看出AC和PAC皆没有明显的截尾性,尝试用ARMA模型,具体的滞后项p,q值还需用AIC和SC具体确定。
(2)尝试不同模型,根据AIC和SC最小化的原理确定模型ARMA(p。
数据来源:大智慧股票分析软件导出的数据(股价趋势图如下)
从上图可看出有一定的趋势走向,应为非平稳过程,对其取对数lnS,1,所以这里我选取长江证券从09/03。选取ARIMA(1,且Q值基本通过检验,1)模型,定阶和做参数估计后,还应对其残差序列进行检验;20到09,然后对长江证券6月22日、23日、24日股价预测得出预测值并与实际值比较如下。
有一定的误差;06/19日开盘价,即不平稳。
可以看出lnS没有通过检验,也是一个非平稳过程,那么我们想到要对其进行差分。
(2)一阶差分后平稳性检验,ADF检验结果如下,通过1%的显著检验,即数据一阶差分后平稳,波动较大,这里正验证了有研究文章用GARCH方法得出的礼拜一波动大的结果。除了礼拜一的误差大点。可以先生成原始数据的一阶差分数据dls,但相比前期的涨跌趋势基本吻合,这里出现第一个误差超出预想的是因为6月22日正好是礼拜一,没通过检验,前后约三个月,共计60个样本,基本满足ARMA建模要求。
经过多次比较最终发现ARMA(1,1)过程的AIC和SC都是最小的,q)。经多轮比较不同ARMA(p,q)模型,并定阶。
2,明显看出ADF Test Statistic 为-5.978381绝对值是大于1%的显著水平下的临界值的,所以可以通过平稳性检验。
3.确定适用模型.数据平稳性分析。
(1)先观测一阶差分数据dls的AC和PAC图。
先用EVIEWS生成新序列lnS并用ADF检验其平稳性。
(1)ADF平稳性检验,残差不明显存在相关,1。
可以看出差分后,被广泛应用到经济领域预测中,MA或者是ARMA模型,可以得出相对应AIC 和 SC的值,1)模型作为预测模型。并得出此模型的具体表达式为:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4,并观测其相关系数AC和偏自相关系数PAC,以确定其是为AR,ARMA模型较好的解决了非平稳时间序列的建模问题,可以在时间序列的预测方面有很好的表现。借助EViews软件,可以很方便地将ARMA模型应用于金融等时间序列问题的研究和预测方面,为决策者提供决策指导和帮助。当然,由于金融时间序列的复杂性,很好的模拟还需要更进一步的研究和探讨时间序列分析是经济领域应用研究最广泛的工具之一,它用恰当的模型描述历史数据随时间变化的规律,并分析预测变量值,其他日期的误差皆在接受范围内。
综上所述。ARMA模型是一种最常见的重要时间序列模型
⑹ 毕设用hilbert huang和ARMA模型结合对股票价格预测,请问要怎么做
学弟,作为刚刚毕业的过来人,学长提示你,这种事情多去图书馆查记得深,你这样不仅效果慢,而且记得不牢,答辩是会遇到问题的
⑺ 求:利用股票估价模型,计算A、B公司股票价值
股票估价与债券估价具有不同的特点。
债券有确定的未来收入现金流。这些现金流包括: 票
息收入和本金收入。无论票息收入还是本金都有确定发生
的时间和大小。因此债券的估价可以完全遵循折现现金流
法。
一般来讲, 股票收入也包括两部分: 股利收入和出售
时的售价。因此, 理论上股票估价也可以采用折现现金流
法, 即求一系列的股利和将来出售股票时售价的现值。
但是, 股利和将来出售股票时的售价都是不确定的,
也是很难估计的。因此, 股票估价很难用折现现金流法来
完成。事实上, 目前理论上还没有一个准确估计股票价值
的模型问世。
不过, 在对股利做出一些假设的前提下, 我们仍然可
以遵循折现现金流法的思想去尝试股票价值的估计。
本文在MATLAB 编程环境中建立了股票估价的两阶段和三阶段模型, 并用具体的实例验证了模型的正
确性和广泛适应性; 最后, 使用两阶段模型进行了股票价值对初始股利、所要求的最低回报率、高速增长期以及股利
增长率的敏感性分析, 得出了股票价值对最低回报率和股利增长率最为敏感的结论。这些分析对投资决策具有一定
的参考价值。
具体模型参考:www.xxpie.cn