A. 股票量化交易策略是什么意思
股市是一门经济学,哲学,概率学,心理学的综合体,想要成功,需要不断去感悟去总结每一次的失败,这样才能走的更好更远。
第一个理念:
顺势而为
股市的大趋势决定个股的走势,当指数大涨时个股更容易爆发,这个时候适合重仓介入,当然要注意获利就出;当市场处于弱势时,就要考虑轻仓介入,不盲目追涨。
第二个理念:
选定有价值的公司
在投资中,选定有价值的公司很重要,因为这些公司有很强的上涨潜力,一旦市场有好的信号,或者公司有大利好时,股价就会飞速上涨,所以这样的公司更容易让普通股民赚到钱。
第三个理念:
分批建仓 坚持到底
在投资中,投资者要住的是要做好投资策略,一般的策略就是分批建仓,在市场下跌时以倒金字塔形态建仓,在市场上涨时,以金字塔形态减仓。如果股票短期被套,市场情况还可以的话,则要选择坚持持仓。
天字一号量化交易系统通过设定不同的各种指标条件,一旦市场交易情况满足这些条件时就自动弹出一些操作指示;设定值达到开仓条件,系统会弹出买入信号、设定值达到减仓条件卖出一半或者全部卖出等。
B. 股票分析技术 量化交易 学生 想找大学生或者年轻人 别太新手,有点经验 然后
你这么厉害 。股票操盘手。你要是分析得准。自己做了。用不着。等别人。
C. 光子量化的智能投资策略是怎样实现的
以下内容取自其官网 :
AI量化策略构建流程
类比挑瓜过程,我们可以对AI量化策略流程进行分解:
第一步:确定数据(如股票池),划分训练集、测试集
首先我们应明确我们构建何种AI量化策略,如A股、港股还是期货等,确定数据后,接着我们把历史数据按时间顺序切分为两部分,类比于分瓜任务中的两堆瓜。
训练集: 第一部分的数据用来训练模型,类比第一堆瓜;
验证集: 第二部分的数据用来验证模型效果,类比第二堆瓜;
第二步:定目标:数据标注
其次我们要明确我们模型的训练目标,是预测股票收益率高低还是波动率高低,就好比是预测西瓜好坏还是年份;
在样例模板中,我们用5日收益率高低来定义股票的走势好坏等级,并将每只对应等级标记在每只股票上,类比于上述切瓜后记录每个瓜的好坏。
AI量化策略的目标(Label):人为定义的模型预测目标,例如未来N日收益率、未来N日波动率、未来N日的收益率排序等统计量,平台AI量化策略默认使用股票收益率作为目标。
AI量化策略的标注: 我们计算训练集数据所在时间阶段的每日目标值,比如按每日的未来N日收益率高低来定义股票的走势好坏等级,计算出每只股票未来N日收益率的好坏等级并标记在每只股票上。
第三步:找因子
选择构建可能影响目标的特征(量化策略中可称为因子),如模板策略中的return_5(5日收益)、return_10(10日收益)等,类比于瓜的产地、大小等特征。
AI量化策略的特征(features): 反映事物在某方面的表现或性质的事项,在AI量化策略中,特征可以是换手率、市盈率、KDJ技术指标等等
第四步:数据连接+缺失数据处理
将上述每只股票的标注数据与特征数据注意链接,以便下一步模型的学习与使用,类比于上述将每个西瓜特征与好坏一一对应;
第五步:模型训练+股票预测
我们通过“好坏等级”对股票进行标注,贴上标签,连同其所对应的特征值一起来构建训练模型,类比于上述我们获取每个瓜的特征与其对应的好坏结果,通过归纳总结找到瓜的好坏与瓜的属性之间的关联,总结出瓜的分类经验;
用验证集数据来检验训练前面构建好的模型,即检验模型根据验证集的特征数据预测出的目标值(股票走势好坏等级)是否准确。这步类比于鉴瓜任务中根据第一堆瓜总结的鉴瓜经验用第二堆西瓜的大小、颜色等特征数据来判断预测瓜的好坏。
第六步:回测
将验证集的预测结果放入历史真实数据中检测,类比于鉴瓜过程中根据第二堆瓜预测出瓜的好坏最后进行切瓜验证。
D. AI股的量化类主题是什么
量化 类主 题 ,是完 全 基于 市场 数 据 构建 的 策略 主题 ,它包 含 了 技术 选 股 主 题 。 量化 类主 题 是采 用 金融 工程方 法 通过 对 全市 场股票 进 行 数 量化筛选 而 构 建主题 。 技 术类主题 是 采 用金 融 工 程方 法 对 技 术类数据 进 行 筛 选 而构建的 主题 。
E. 什么是α,β收益,量化投资的策略创建与分析
α收益:一揽子可以自定义低估、同质化并且有波动的股票,不断买入更便宜的,卖出更贵的,从而获得的收益。
例如:几个跟着沪深300的ETF,你发现手中持有的沪深300ETF溢价2%了,而市场上同时存在一个折价1%的ETF,那么就卖出溢价高的沪深300ETF,去买折价的,这样虽然始终持有沪深300ETF,但获得了超越沪深300指数本身的收益,就是α收益。
解释一下同质化:明显所有的沪深300ETF是同质化的,也可以认为最小市值20个股票是同质化的,所有银行股是同质化的,分级A是同质化的。下文中有解释自定义低估。
β收益:基本面本身上涨是β收益。
例如,自定义最小市值的10个股票为一个指数,这些最小市值从5亿涨到20亿,这就是β收益。自定义最低股价10个为一个指数,从牛市的5元跌到2元,那么β收益就是负的
量化策略创建三个步骤:
策略的理论基础
历史回测
找到策略黑天鹅。
(一)策略的理论基础:(大致分为三类):
基本面理论
按基本面又可以分为:1.价值型;2.成长型;3.品质型;按中国特色A股基本面又可以添加;4.小市值型;5.股价型
技术面理论
按技术面又可以分为:1.趋势型,2.趋势反转型,3.缩量反弹,4.指数轮动,5.择时
风险套利
风险套利(或者称轮动):不断买入更便宜的,卖出更贵的。
注意:
有些理论基础并不牢固,并且不能很好解释(这也导致了各种投资流派互相不服)
有些量化跳过了理论基础,直接根据历史统计进行量化(本文不讨论),例如,统计两会前后涨跌,一季度历史表现最好板块
对策略理论的解释:
基本面策略可以定义什么是低估,比如低PE是低估,低市值是低估,低股价是低估,高ROE是低估,高成长是低估;也可以自定义低估,PB*PE是低估,总市值*流通市值小是低估
基本面理论提供了一揽子同质化并且有波动的股票。有些基本面策略的股票间波动较小,例如最低PE股,一段时期内总是那么几个银行股;有些波动较大,比如小市值型
技术面理论有些很难定义什么是低估,比如趋势型;有些则看似可以定义低估,例如,BIAS最小,20日跌幅最大,其实也不是
能自定义低估的策略是风险套利,不能自定义低估的策略是统计
基本面本身能上涨,就获得了β收益
我得出的结论是:风险套利策略的核心是对自定义低估的轮动,即不断获得α收益!!
如何获得α收益:大部分基本面策略的收益是因为风险套利获得的;也就是不断买入更低估的,卖出更贵的;也就是因为调仓周期内因不同股票的波动而产生收益,因此适当缩短周期有利于提高收益;所以在一年内交易次数越多,alpha收益越大(投资大师说的减少交易次数,并不适用于套利)
理论本身获得的β收益并不多,甚至为负(价值型由于近几年市场估值不断降低,不调仓的话,收益是负的)
我们应当寻找的是:基本面理论本身能上涨,且能提供同质化,波动较大的策略(即获得α,又获得β)
统计策略其内在逻辑说服力小,是过去的概率来预测未来
(二)历史回测:回测中最重要一点是:不要欺骗自己
历史回测中要用到一个哲学思想,叫做奥卡姆剃刀:较简单的理论比复杂的理论更好,因为它们更加可检验
改变测试起始时间。调仓周期超过2天的策略,应该试遍每个起始时间,取平均收益,这才最接近策略真实历史回测,因为理论上起始时间变化一两天对策略收益影响是不大的,如果变化很大就说明过度优化。
不要创建静态股票池。历史上每个阶段都有大牛股,完全可以收集大牛股作为股票池,算好调仓周期,每个阶段买最牛的,收益可以美到不敢想象
不要用PE.PB等指标精确逃顶抄底,最多用来确定一个大致范围。每次大顶点位都是不同的,这样的择时毫无意义。
先用25个以上股票测试,确定策略有效性,再减少数量做策略,如果25个测试无效,那么一两个即使收益很好,也该放弃。
改变条件权重。如果稍微改变权重,收益变化很大,那么就降低策略未来预期收益,别指望策略以后会表现这么好。
尽量从07年开始测试。除非你能确定每个时间市场的风格,显然这是不可能的。
同一套择时系统,如果用在策略1上回撤是30%,用在策略2上回撤是15%,你肯定会选择策略2,如果策略1和2本质上是差不多的策略,别太高兴,在未来,策略1和2表现谁好谁坏也是难说的
(三)找到黑天鹅:每个策略都有黑天鹅
价值型,成长型,品质型策略,黑天鹅是过一个季度,可能财务数据完全变了,因此持仓个数不能太少,行业要分开
小市值,低价,低交易额策略,黑天鹅是出现仙股
统计类,技术类策略,黑天鹅是理论本身就不完美
F. 量化交易主要有哪些经典的策略
量化选股之多因子选股模型
量化择时--双均线(MA)、DMA、TRIX、MACD择时
量化择时--PE择时
还有趋势型,网格型,剥头皮,概率法则,高频交易,神经网络,基因算法
G. 国内股票的量化投资策略有哪些,特别是基本面量化
柠檬给你问题解决的畅快感觉!主要的量化对冲策略有:1、市场中性策略 主要追求的是通过各类对冲手段消除投资组合的大部分或全部系统风险,寻找市场中的相近资产的定价偏差,利用价值回归理性的时间差,在市场中赚取细小的差价来获得持续的收益。2、事件驱动套利策略 利用特殊事件造成的对资产价格的错误定价,从错误定价中谋利。3、相对价值策略 主要是利用证券资产间相对的价值偏差进行获利。感觉畅快?别忘了点击采纳哦!
H. 量化选股策略是什么多因子模型是什么
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
多因子模型是应用最广泛的一种选股模型,基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发挥作用。
I. 用量化理论去分析一个股票
量化就是指通过一些数学模型,例如概率模型,风险模型等,去预测接下来的事情发生的概率。用量化的理论去分析股票就是用这些量化数学模型去预测一个股票接下来的走势、涨跌概率等,数学的东西比较复杂,推荐你用胜算在握量化炒股APP,他们就是做量化投资炒股的,可以跟着学习一下..
J. AI都能炒股了,以后就要拼谁的算法牛了
人工智能量化交易平台宣布获得数百万人民币融资。据悉,本轮融资将主要用于团队建设、产品开发和硬件设备投入。
是一家基于人工智能的量化投资公司,成立于2017年10月,主要将技术应用于量化投资领域,实现低风险高收益的投资回报。
中国私、公募基金规模呈大跨步发展,截止2018年2月底,中国私募基金规模已达12.01万亿元,公募资金规模已达12.64万亿,在控制风险的前提下,提高获得投资收益的效率,是公、私募投资最大需求,国外盛行的量化交易越来越被国内机构所接受。
在量化交易这个领域,目前已有不少项目:私人量化交易平台JoinQuant、RiceQuant以及优矿,为量化交易领域提供核心算法支持的众加,量化策略商城微量网、以量财富为代表的量化理财平台,以及为量化投资者提供智能交易和分析工具的名策数据。
量化交易策略的建立是量化交易的重要环节。目前主要方式有两种,一种是输入与这套逻辑相关联的因子,比如历史表现、公司财务数据、宏观经济数据、上下游供应商数据等众多参数,建立一套模型,以算出标的上涨或下跌的概率,并生成投资组合和调仓策略。随着近几年人工智能兴起,不少人开始选用机器学习等方式,输入众多因子,让AI自己生成策略。
创始人兼CEO庞表示,的做法则不同,是用神经管网络替代原来用逻辑和策略构建的数学模型,通过输入股票相关数据,利用训练不同结构的神经网络来实现机器自主的量化交易。想做量化交易界的Deepmind(研发阿尔法狗的团队),成为中国的基金。
目前,的首个产品A股机器人“狗”已上线,应用于国内二级市场的投资,产品已实盘测试8个月。数据显示,狗实盘业绩显著,在2017年11月A股普跌的情况下(中证1000跌幅超4%),狗依然实现了5.23%的收益,最大回撤控制在2.7%,并在2018年1月底上证指数大跌12%的情况下,智富狗做到了提前清盘避险,业绩明显优于大盘。
投资人黄表示:“人工智能是非常好的提高效率的方式,非常关注人工智能在各个领域的应用,我们认为以为代表的、基于神经网络的人工智能量化交易平台,能极大地提高大型的高频交易的效率。人的精力有限,一个再好的操盘手也不可能同时看2000支股票,但机器能轻易办到。”