㈠ 蒙特卡洛标准预测方法-蒙特卡洛模拟方法-Excel学习网
此图说明了确定性的预测……根据我的经验,这是标准方法。它本质上是在问:“如果我们的销售量为100,销售商品的成本为35%,营业费用为45,税金为25%,我们的利润将是多少?”
(单击此处以获取此工作簿的副本,其中包含本页上描述的所有蒙特卡洛表和报告。这将使您能够集中精力于如何使蒙特卡洛方法适应您自己的公司。)
与大多数此类预测不同,该预测在F列中明确说明了其假设。
当然,在现实生活中,每个假设都可能得到单独的分析和预测的支持。
再次,这种方法的问题在于我们知道预测将是不正确的,因为大多数预测都是不正确的,并且我们无法表达利润预测可能合理的错误程度。
因此,让我们修复此预测...
㈡ 为什么美式期权不能直接用蒙特卡洛模拟
以执行价 K=98 的美式看跌期权为例,蒙特卡洛模拟的结果是一条确定的价格路径,比如下面这样:
T | t=0 | t=1 | t=2 | t=3
路径1 | 100 | 97 | 103 | 105
如果你对照着这条路径,就应该在t=1时行权。但这样就相当于,你在t=1时,就已经知道未来的价格走势了。
这种预知未来,在现实中是不被允许的。你可以回归数据,得到映射关系(或者说 规律),但不可以翻剧本、直接用未来的结果。所以考虑引入最小二乘蒙特卡洛模拟,E(Y|X)=g(X),其中Y是继续持有、不提前行权、所带来的未来收益贴现值(即内在价值),而X是标的物在t时刻的价格。
作为加深理解,你考虑下欧式期权,由于不依赖路径,不会提前行权,只关注到期日 T 这一个时间点上的标的物价格,所以可以直接用蒙特卡洛模拟。
㈢ 下面的问题用蒙特卡洛模拟如何实现啊,想了解个基本过程
蒙特卡洛的基本原理就是通过计算机的计算能力进行大量实验。实验样本到达一定数量后,能得出接近结果的数值解。这个题目可以通过计算直接得出结果接近于正态分布,但可以用excel简单的说明下蒙特卡洛方法。
用excel的步骤基本如下:
1、第一列拉出各周期编号1至1000。(假设都是从第一行开始)
2、第二列作为随机种子,B1输入=rand()
3、第三列为根据既定价格及概率p值(回答里写的p值,但输入时应该是具体数值)判断购买与否,C1输入=if(B1<p,1,0)
4、第四列、五列展示周期开始、结束时剩余货物,即D1为50,E1输入=max(D1-C1,0),而后D2输入=E1,E2输入=max(D1-C1,0)。
5、每一列对应下拉(四、五列从第二行开始下拉)。
按这个步骤的话,就得出一个既定价格下,剩余产品数量随时间变化的表。
至于最后的利润也是可以根据这个算的。
不过以上的过程是基于对每个周期买的概率进行1000次蒙特卡洛模拟。
如果模拟的是这1000次周期的结果,那就直接用一列到位,对多列的结果进行统计。
第1列仍然编号,第2列直接整合上述234步,表示该周期初始货物存货,第1行50,第二行B2输入=IF(RAND()<p,MAX(B1-1,0),B1),这里用的p仍然是数值的表示,比如说概率是0.7,实际应该输入=IF(RAND()<0.7,MAX(B1-1,0),B1)
下拉,出现到1000步的初始货物存货,根据要求实际上是1000步后的结果,可以拉到1001行。这就用单列表示了整个货物变化过程,如果想要更多1000步的不同结果,把整个b列右拉即有更多结果。
㈣ 用蒙特卡罗模拟法研究股市有效吗
技术面的股票分析有MACD、威廉指标,等等太多了,没有一种指标是真正能够完美预测股价涨跌的,消息面,市场供需等多方面考虑才是。
㈤ 蒙特卡洛模拟法
蒙特卡洛模拟技术,是用随机抽样的方法抽取一组满足输入变量的概率分布特征的数值,输入这组变量计算项目评价指标,通过多次抽样计算可获得评价指标的概率分布及累计概率分布、期望值、方差、标准差,计算项目可行或不可行的概率,从而估计项目投资所承担的风险。
蒙特卡洛模拟的步骤如下:
第一步,通过敏感性分析,确定风险变量。
第二步,构造风险变量的概率分布模型。
第三步,为各输入风险变量抽取随机数。
第四步,将抽得的随机数转化为各输入变量的抽样值。
第五步,将抽样值组成一组项目评价基础数据。
第六步,根据基础数据计算出评价指标值。
第七步,整理模拟结果所得评价指标的期望值、方差、标准差和它的概率分布及累计概率,绘制累计概率图,计算项目可行或不可行的概率。
蒙特卡洛模拟程序如图7-26所示。
图7-26 蒙特卡洛模拟程序图
【实训Ⅷ】某项目建设投资为1亿元,流动资金1000 万元,项目两年建成,第三年投产,当年达产。不含增值税年销售收入为5000万元,经营成本2000万元,附加税及营业外支出每年为50万元,项目计算期12 a。项目要求达到的项目财务内部收益率为15%,求内部收益率低于15%的概率。
由于蒙特卡洛模拟的计算量非常大,必须借助计算机来进行。本案例通过手工计算,模拟20次,主要是演示模拟过程。
(1)确定风险变量。通过敏感性分析,得知建设投资、产品销售收入、经营成本为主要风险变量。流动资金需要量与经营成本线性相关,不作为独立的输入变量。
(2)构造概率分布模型。建设投资变化概率服从三角形分布,其悲观值为1.3亿元、最大可能值为1亿元、乐观值为9000万元,如图7-27所示。年销售收入服从期望值为5000万元、σ=300万元的正态分布。年经营成本服从期望值为2000万元、σ=100 万元的正态分布。
图7-27 投资三角形分布图
建设投资变化的三角形分布的累计概率,见表7-16及图7-27所示。
表7-16 投资额三角形分布累计概率表
(3)对投资、销售收入、经营成本分别抽取随机数,随机数可以由计算机产生,或从随机数表中任意确定起始数后,顺序抽取。本例从随机数表(表7-20)中抽取随机数。假定模拟次数定为k=20,从随机数表中任意从不同地方抽取三个20 个一组的随机数,见表7-17。
表7-17 输入变量随机抽样取值
(4)将抽得的随机数转化为各随机变量的抽样值。
这里以第1组模拟随机变量产生做出说明。
1)服从三角形分布的随机变量产生方法。
根据随机数在累计概率表(表7-16)或累计概率图(图7-28)中查取。投资的第1个随机数为48867万元,查找累计概率0.48 867所对应的投资额,从表7-16中查得投资额在10300与10600之间,通过线性插值可得
第1个投资抽样值=10300+300×(48867-39250)/(52000-39250)=10526万元
2)服从正态分布的随机变量产生方法。
从标准正态分布表(表7-21)中查找累计概率与随机数相等的数值。例如销售收入第1个随机数06242,查标准正态分布表得销售收入的随机离差在-1.53与-1.54之间,经线性插值得-1.5348。
图7-28 投资的累计概率分布图
第1个销售收入抽样值=5000-1.5348×300≈4540万元。
同样,经营成本第一个随机数66 903相应的随机变量离差为0.4328,第一个经营成本的抽样值=2000+100×0.4328=2043万元。
3)服从离散型分布的随机变量的抽样方法。
本例中没有离散型随机变量。另举例如下,据专家调查获得的某种产品售价的概率分布见表7-18。
表7-18 某种产品售价的概率分布
根据上表绘制累计概率如图7-29所示。
若抽取的随机数为43252,从累计概率图纵坐标上找到累计概率为0.43252,划一水平线与累计概率折线相交的交点的横坐标值125元,即是售价的抽样值。
(5)投资、销售收入、经营成本各20个抽样值组成20组项目评价基础数据。
(6)根据20组项目评价基础数据,计算出20 个计算项目评价指标值,即项目财务内部收益率。
(7)模拟结果达到预定次数后,整理模拟结果按内部收益率从小到大排列并计算累计概率,见表7-19所示。
从累计概率表可知内部收益率低于15%的概率为15%,内部收益率高于15%的概率为85%。
图7-29 售价累计概率曲线
表7-19 蒙特卡洛模拟法累积概率计算表
①每次模拟结果的概率=1/模拟次数。
㈥ 什么是蒙特卡洛分析
蒙特卡罗分析法(统计模拟法),是一种采用随机抽样统计来估算结果的计算方法,可用于估算圆周率,由约翰·冯·诺伊曼提出。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
利用蒙特卡罗分析法可用于估算圆周率,如图,在边长为 2 的正方形内作一个半径为 1 的圆,正方形的面积等于 2×2=4,圆的面积等于 π×1×1=π,由此可得出,正方形的面积与圆形的面积的比值为 4:π。
现在让我们用电脑或轮盘生成若干组均匀分布于 0-2 之间的随机数,作为某一点的坐标散布于正方形内,那么落在正方形内的点数 N 与落在圆形内的点数 K 的比值接近于正方形的面积与圆的面积的比值,即,N:K ≈ 4:π,因此,π ≈ 4K/N 。
用此方法求圆周率,需要大量的均匀分布的随机数才能获得比较准确的数值,这也是蒙特卡罗分析法的不足之处。
(6)使用蒙特卡洛模拟分析股票价格扩展阅读:
使用蒙特·卡罗方法进行分子模拟计算是按照以下步骤进行的:
1. 使用随机数发生器产生一个随机的分子构型。
2. 对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
3. 计算新的分子构型的能量。
4. 比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼因子,并产生一个随机数。
若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。 若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。
5. 如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。
项目管理中蒙特·卡罗模拟方法的一般步骤是:
1.对每一项活动,输入最小、最大和最可能估计数据,并为其选择一种合适的先验分布模型;
2.计算机根据上述输入,利用给定的某种规则,快速实施充分大量的随机抽样
3.对随机抽样的数据进行必要的数学计算,求出结果
4.对求出的结果进行统计学处理,求出最小值、最大值以及数学期望值和单位标准偏差
5.根据求出的统计学处理数据,让计算机自动生成概率分布曲线和累积概率曲线(通常是基于正态分布的概率累积S曲线)
6.依据累积概率曲线进行项目风险分析。
㈦ 在投资理财领域蒙特卡罗方法是如何运用的
在个人理财计划领域,你可以模拟自己未来收入的不确定性、保险金的不确定性、理财产品收益的不确定性,分析不同情况下你的预算是怎样的,然后进行理财规划。
在公司金融领域,由于投资项目的现金流有不确定性,可以在现金流不确定的部分用蒙特卡洛模拟然后计算NPV;
在投资组合管理领域,可以蒙特卡洛模拟不同的影响因子的变化然后观测它们的变化以及协同变化对投资组合内标的资产的价值变化的影响;
㈧ 怎么用 Excel 做蒙特卡洛模拟
Excel 做蒙特卡洛模拟的具体操作步骤如下:
1、打开Excel表格,填写三个活动时间估算的乐观值,最可能值和悲观值。
㈨ 对历史股票价格做蒙特卡洛模拟
你先用5年前的数据模拟一下现在股票的价格,看准不准再说吧
㈩ 什么是蒙特卡洛模拟( Monte Carlo simulation)
蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
(10)使用蒙特卡洛模拟分析股票价格扩展阅读
基本原理思想
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。