❶ 对数据进行系统聚类分析,说出每个统计量的现实意义,并根据所得分析结果做出自己的评价。求大神帮忙!
用k-means聚类做。一瞬间的。
你这个不是数字版本啊,难度我一个一个数字自己打上去?
------------
你用什么软件?
sas?spss?还是什么
如果你不喜欢编程,你直接用rapidminer
找到里面的k-means方法,吧数据拖到软件里然后吧数据链接到方法上然后链接一个输出就可以了。
每个参数都有帮助说明的。
如果你时间多,cluster类下面有很多的聚类方法,你都可以一个一个试试看。
❷ 基于信息比率聚类我国A股市场结构分析是什么意思
今天是2020年4月19日,上证A股2838点,大盘预期3万点目标不变,时间在2020年8月结束。基调还是买买买,目前就是最低点,错过就是半辈子。
❸ 用于数据挖掘的聚类算法有哪些,各有何优势
1、层次聚类算法
1.1聚合聚类
1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离
1.1.2最具代表性算法
1)CURE算法
特点:固定数目有代表性的点共同代表类
优点:识别形状复杂,大小不一的聚类,过滤孤立点
2)ROCK算法
特点:对CURE算法的改进
优点:同上,并适用于类别属性的数据
3)CHAMELEON算法
特点:利用了动态建模技术
1.2分解聚类
1.3优缺点
优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力
缺点:大大延长了算法的执行时间,不能回溯处理
2、分割聚类算法
2.1基于密度的聚类
2.1.1特点
将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类
2.1.2典型算法
1)DBSCAN:不断生长足够高密度的区域
2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合
3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进
2.2基于网格的聚类
2.2.1特点
利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构;
1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据
2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性
2.2.2典型算法
1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率
2)STING+:改进STING,用于处理动态进化的空间数据
3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据
4)WaveCluster:以信号处理思想为基础
2.3基于图论的聚类
2.3.1特点
转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边
1)优点:不需要进行相似度的计算
2.3.2两个主要的应用形式
1)基于超图的划分
2)基于光谱的图划分
2.4基于平方误差的迭代重分配聚类
2.4.1思想
逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解
2.4.2具体算法
1)概率聚类算法
期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释
2)最近邻聚类算法——共享最近邻算法SNN
特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数
不足:时间复杂度提高到了O(N^2)
3)K-Medioids算法
特点:用类中的某个点来代表该聚类
优点:能处理任意类型的属性;对异常数据不敏感
4)K-Means算法
1》特点:聚类中心用各类别中所有数据的平均值表示
2》原始K-Means算法的缺陷:结果好坏依赖于对初始聚类中心的选择、容易陷入局部最优解、对K值的选择没有准则可依循、对异常数据较为敏感、只能处理数值属性的数据、聚类结构可能不平衡
3》K-Means的变体
Bradley和Fayyad等:降低对中心的依赖,能适用于大规模数据集
Dhillon等:调整迭代过程中重新计算中心方法,提高性能
Zhang等:权值软分配调整迭代优化过程
Sarafis:将遗传算法应用于目标函数构建中
Berkh in等:应用扩展到了分布式聚类
还有:采用图论的划分思想,平衡聚类结果,将原始算法中的目标函数对应于一个各向同性的高斯混合模型
5)优缺点
优点:应用最为广泛;收敛速度快;能扩展以用于大规模的数据集
缺点:倾向于识别凸形分布、大小相近、密度相近的聚类;中心选择和噪声聚类对结果影响大
3、基于约束的聚类算法
3.1约束
对个体对象的约束、对聚类参数的约束;均来自相关领域的经验知识
3.2重要应用
对存在障碍数据的二维空间按数据进行聚类,如COD(Clustering with Obstructed Distance):用两点之间的障碍距离取代了一般的欧式距离
3.3不足
通常只能处理特定应用领域中的特定需求
4、用于高维数据的聚类算法
4.1困难来源因素
1)无关属性的出现使数据失去了聚类的趋势
2)区分界限变得模糊
4.2解决方法
1)对原始数据降维
2)子空间聚类
CACTUS:对原始空间在二维平面上的投影
CLIQUE:结合基于密度和网格的聚类思想,借鉴Apriori算法
3)联合聚类技术
特点:对数据点和属性同时进行聚类
文本:基于双向划分图及其最小分割的代数学方法
4.3不足:不可避免地带来了原始数据信息的损失和聚类准确性的降低
❹ 股票概念的聚类用什么模型
所有股票分析软件都有这个功能,输入想看概念板块,如煤炭输入MT小写就可以看到了
❺ 聚类分析数据分析过程 分析结果怎么写
就是哪几个聚为一类,然后你具体去分析聚为一类的几个数据有什么共同特点
❻ 如何用MATLAB对股票数据做聚类分析
直接调kmeans函数。
k = 3;%类别数
idx = kmeans(X, k);%idx就是每个样本点的标号。
❼ 聚类分析的算法
聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。
1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:
k-means,k-medoids,CLARA(Clustering LARge Application),
CLARANS(Clustering Large Application based upon RANdomized Search).
FCM
2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合
并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:
BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。
CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。
ROCK方法,它利用聚类间的连接进行聚类合并。
CHEMALOEN方法,它则是在层次聚类时构造动态模型。
3 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:
DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。
OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。
4 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。
STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。
CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方法。
5 基于模型的方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:
统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。
CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.
传统的聚类算法已经比较成功的解决了低维数据的聚类问题。但是由于实际应用中数据的复杂性,在处理许多问题时,现有的算法经常失效,特别是对于高维数据和大型数据的情况。因为传统聚类方法在高维数据集中进行聚类时,主要遇到两个问题。①高维数据集中存在大量无关的属性使得在所有维中存在簇的可能性几乎为零;②高维空间中数据较低维空间中数据分布要稀疏,其中数据间距离几乎相等是普遍现象,而传统聚类方法是基于距离进行聚类的,因此在高维空间中无法基于距离来构建簇。
高维聚类分析已成为聚类分析的一个重要研究方向。同时高维数据聚类也是聚类技术的难点。随着技术的进步使得数据收集变得越来越容易,导致数据库规模越来越大、复杂性越来越高,如各种类型的贸易交易数据、Web 文档、基因表达数据等,它们的维度(属性)通常可以达到成百上千维,甚至更高。但是,受“维度效应”的影响,许多在低维数据空间表现良好的聚类方法运用在高维空间上往往无法获得好的聚类效果。高维数据聚类分析是聚类分析中一个非常活跃的领域,同时它也是一个具有挑战性的工作。高维数据聚类分析在市场分析、信息安全、金融、娱乐、反恐等方面都有很广泛的应用。
❽ 聚类分析聚类算法中包含哪些数据类型
聚类分析聚类算法中包含哪些数据类型
许多基于内存的聚类算法采用以下两种数据结构:
(1)数据矩阵(Data Matrix,或称对象一变盘结构):用p个变量来表示n个对象,例如使用年龄、身高、性别、体重等属性变量来表示对象人,也叫二模矩阵,行与列代表不同实体:
(2)相异度矩阵(Dissimilarity Matrix,又称为对象一对象结构):存储所有成对的n个对象两两之间的近似性(邻近度),也叫单模矩阵,行和列代表相同的实体。其中d(ij)是对象i和对象j之间的测量差或相异度。d(i,f)是一个非负的数值,d(ij)越大,两个对象越不同;d (i,j)越接近于0,则两者之间越相似(相近)。
许多聚类算法都是以相异度矩阵为基础的,如果数据是用数据矩阵形式表示,则往往要将其先转化为相异度矩阵。
相异度d(i,j)的具体计算会因所使用的数据类型不同而不同,常用的数据类型包括:区间标度变量,二元变量,标称型、序数型和比例标度型变量,混合类型的变量。
❾ 数据分类和聚类有什么区别
你好,
简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。
简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。
区别是,分类是事先定义好类别 ,类别数不变 。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。聚类则没有事先预定的类别,类别数不确定。 聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成 。分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等。
分类的目的是学会一个分类函数或分类模型(也常常称作分类器 ),该模型能把数据库中的数据项映射到给定类别中的某一个类中。 要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。
聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示。聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题。常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANS、 BIRCH、CLIQUE、DBSCAN等。
希望回答对您有帮助.
❿ 适合进行聚类算法分析的数据集,除了IRIS,还有哪些谢谢
美国的UCI数据库